Application of Next-Generation Sequencing in Neurodegenerative Diseases: Opportunities and Challenges.
Alzheimer Disease
/ diagnosis
Base Sequence
Early Diagnosis
Epilepsy
/ diagnosis
Forecasting
Gene Library
Genetic Heterogeneity
Genetic Predisposition to Disease
Genetic Testing
High-Throughput Nucleotide Sequencing
/ trends
Humans
Molecular Diagnostic Techniques
Multiple Sclerosis
/ diagnosis
Neurodegenerative Diseases
/ diagnosis
Parkinson Disease
/ diagnosis
Exome Sequencing
Whole Genome Sequencing
Gene panel
Neurological diseases
Next-generation sequencing (NGS)
Whole exome sequencing (WES)
Whole genome sequencing (WGS)
Journal
Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
29
01
2020
accepted:
01
05
2020
pubmed:
14
5
2020
medline:
8
2
2022
entrez:
14
5
2020
Statut:
ppublish
Résumé
Genetic factors (gene mutations) lead to various rare and prevalent neurological diseases. Identification of underlying mutations in neurodegenerative diseases is of paramount importance due to the heterogeneous nature of the genome and different clinical manifestations. An early and accurate molecular diagnosis are cardinal for neurodegenerative patients to undergo proper therapeutic regimens. The next-generation sequencing (NGS) method examines up to millions of sequences at a time. As a result, the rare molecular diagnoses, previously presented with "unknown causes", are now possible in a short time. This method generates a large amount of data that can be utilized in patient management. Since each person has a unique genome, the NGS has transformed diagnostic and therapeutic strategies into sequencing and individual genomic mapping. However, this method has disadvantages like other diagnostic methods. Therefore, in this review, we aimed to briefly summarize the NGS method and correlated studies to unravel the genetic causes of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, epilepsy, and MS. Finally, we discuss the NGS challenges and opportunities in neurodegenerative diseases.
Identifiants
pubmed: 32399804
doi: 10.1007/s12017-020-08601-7
pii: 10.1007/s12017-020-08601-7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
225-235Références
Addis, L., Rosch, R. E., Valentin, A., Makoff, A., Robinson, R., Everett, K. V., et al. (2016). Analysis of rare copy number variation in absence epilepsies. Neurology Genetics, 2(2), e56.
pubmed: 27123475
pmcid: 4830185
Agostoni, E. C., Barbanti, P., Calabresi, P., Colombo, B., Cortelli, P., Frediani, F., et al. (2019). Current and emerging evidence-based treatment options in chronic migraine: A narrative review. The Journal of Headache and Pain, 20(1), 1–9.
Ambroziak, W., Koziorowski, D., Duszyc, K. et al. (2015). Genomic instability in the PARK2 locus is associated with Parkinson’s disease. Journal of Applied Genetics, 56, 451–461.
pubmed: 25833766
pmcid: 4617850
Ankala, A., da Silva, C., Gualandi, F., Ferlini, A., Bean, L. J., Collins, C., et al. (2015). A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Annals of Neurology, 77(2), 206–214.
pubmed: 25380242
Bahrani, H., Mohamad, J., Paydar, M. J., & Rothan, H. A. (2014). Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD). Current Alzheimer Research, 11, 206–2014.
pubmed: 24479629
Barcia, G., Fleming, M. R., Deligniere, A., Gazula, V. R., Brown, M. R., Langouet, M., et al. (2012). De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nature Genetics, 44(11), 1255.
pubmed: 23086397
pmcid: 3687547
Bekris, L. M., Yu, C. E., Bird, T. D., & Tsuang, D. W. (2010). Genetics of Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 23(4), 213–227.
pubmed: 21045163
pmcid: 3044597
Belle, A., Thiagarajan, R., Soroushmehr, S. M. R., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed Research International, 2015, 1–16.
Berglund, E. C., Kiialainen, A., & Syvänen, A. C. (2011). Next-generation sequencing technologies and applications for human genetic history and forensics. Investigative Genetics, 2(1), 23.
pubmed: 22115430
pmcid: 3267688
Bradley, W. G., Andrew, A. S., Traynor, B. J., Chiò, A., Butt, T. H., & Stommel, E. W. (2018). Gene–environment–time interactions in neurodegenerative diseases: Hypotheses and research approaches. Annals of Neurosciences, 25(4), 261–267.
pubmed: 31000966
pmcid: 6470336
Caggiu, E., Paulus, K., Mameli, G., Arru, G., Sechi, G. P., & Sechi, L. A. (2018). Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci, 13, 1–4.
pubmed: 30255159
pmcid: 6149197
Campostrini, G., DiFrancesco, J. C., Castellotti, B., Milanesi, R., Gnecchi-Ruscone, T., Bonzanni, M., et al. (2018). A loss-of-function HCN4 mutation associated with familial benign myoclonic of infancy causes increased neuronal excitability. Frontiers in Molecular Neuroscience, 11, 269.
pubmed: 30127718
pmcid: 6089338
Chardon, J. W., Beaulieu, C., Hartley, T., Boycott, K. M., & Dyment, D. A. (2015). Axons to exons: The molecular diagnosis of rare neurological diseases by next-generation sequencing. Current Neurology and Neuroscience Reports, 15(9), 64.
Chong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D., et al. (2015). The genetic basis of Mendelian phenotypes: Discoveries, challenges, and opportunities. The American Journal of Human Genetics, 97(2), 199–215.
pubmed: 26166479
Epi25 Collaborative, Feng, Y. C. A., Howrigan, D. P., Abbott, L. E., Tashman, K., Cerrato, F., et al. (2019). Ultra-rare genetic variation in the epilepsies: A whole-exome sequencing study of 17,606 individuals. American Journal of Human Genetics, 105(2), 267–282.
Cuccaro, M. L., Carney, R. M., Zhang, Y., Bohm, C., Kunkle, B. W., Vardarajan, B. N., et al. (2016). SORL1 mutations in early-and late-onset Alzheimer disease. Neurology Genetics, 2(6), e116.
pubmed: 27822510
pmcid: 5082932
Davies, M. A. (2015). Molecular approaches to tumor inhibition in melanoma. Clinical Advances in Hematology & Oncology: H&O, 13(12), 831–833.
Del Vecchio, F., Mastroiaco, V., Di Marco, A., Compagnoni, C., Capece, D., Zazzeroni, F., et al. (2017). Next-generation sequencing: Recent applications to the analysis of colorectal cancer. Journal of Translational Medicine, 15(1), 246.
pubmed: 29221448
pmcid: 5723063
Devonshire, A. S., Whale, A. S., Gutteridge, A., Jones, G., Cowen, S., Foy, C. A., et al. (2014). Towards standardisation of cell-free DNA measurement in plasma: Controls for extraction efficiency, fragment size bias and quantification. Analytical and Bioanalytical Chemistry, 406(26), 6499–6512.
pubmed: 24853859
pmcid: 4182654
Dewey, F. E., Grove, M. E., Pan, C., Goldstein, B. A., et al. (2014). Clinical Interpretation and Implications of Whole-Genome Sequencing. JAMA, 311, 1035.
pubmed: 24618965
pmcid: 4119063
Dinwiddie, D. L., Smith, L. D., Miller, N. A., Atherton, A. M., Farrow, E. G., Strenk, M. E., et al. (2013). Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics, 102(3), 148–156.
pubmed: 23631824
pmcid: 4557607
Dyment, D. A., Cader, M. Z., Chao, M. J., Lincoln, M. R., Morrison, K. M., Disanto, G., et al. (2012). Exome sequencing identifies a novel multiple sclerosis susceptibility variant in the TYK2 gene. Neurology, 79(5), 406–411.
pubmed: 22744673
pmcid: 3405256
Ecker, J. R., Bickmore, W. A., Barroso, I., Pritchard, J. K., Gilad, Y., & Segal, E. (2012). Genomics: ENCODE explained. Nature, 489(7414), 52.
pubmed: 22955614
Evilä, A., Arumilli, M., Udd, B., & Hackman, P. (2016). Targeted next-generation sequencing assay for detection of mutations in primary myopathies. Neuromuscular Disorders, 26(1), 7–15.
pubmed: 26627873
Farwell, K. D., Shahmirzadi, L., El-Khechen, D., Powis, Z., Chao, E. C., Davis, B. T., et al. (2015). Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genetics in Medicine, 17(7), 578.
pubmed: 25356970
Foley, A. R., Donkervoort, S., & Bönnemann, C. G. (2015). Next-generation sequencing still needs our generation's clinicians. Neurology Genetics, 1(2), e13.
pubmed: 27066550
pmcid: 4807906
Foo, J. N., Liu, J. J., & Tan, E. K. (2012). Whole-genome and whole-exome sequencing in neurological diseases. Nature Reviews Neurology, 8(9), 508.
pubmed: 22847385
Gilissen, C., Hehir-Kwa, J. Y., Thung, D. T., van de Vorst, M., van Bon, B. W., Willemsen, M. H., et al. (2014). Genome sequencing identifies major causes of severe intellectual disability. Nature, 511(7509), 344.
pubmed: 24896178
Gonzaga-Jauregui, C., Lotze, T., Jamal, L., Penney, S., Campbell, I. M., Pehlivan, D., et al. (2013). Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurology, 70(12), 1491–1498.
pubmed: 24126608
pmcid: 4039291
Grizzle, W. E., Otali, D., Sexton, K. C., & Atherton, D. S. (2016). Effects of cold ischemia on gene expression: a review and commentary. Biopreservation and Biobanking, 14(6), 548–558.
pubmed: 27551929
pmcid: 5180081
Grozdanov, V., Bliederhaeuser, C., Ruf, W. P., Roth, V., Fundel-Clemens, K., Zondler, L., Brenner, D., Martin-Villalba, A., Hengerer, B., Kassubek, J., & Ludolph, A. C. (2014). Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathologica, 128(5), 651–663.
Halvorsen, M., Petrovski, S., Shellhaas, R., Tang, Y., Crandall, L., Goldstein, D., et al. (2015). Mosaic mutations in early-onset genetic diseases. Genetics in Medicine, 18(7), 746.
pubmed: 26716362
pmcid: 4929028
Heron, S. E., Smith, K. R., Bahlo, M., Nobili, L., Kahana, E., Licchetta, L., et al. (2012). Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics, 44(11), 1188.
pubmed: 23086396
Hollenbach, J. A., & Oksenberg, J. R. (2015). The immunogenetics of multiple sclerosis: A comprehensive review. Journal of Autoimmunity, 64, 13–25.
pubmed: 26142251
pmcid: 4687745
Hrdlickova, R., Toloue, M., & Tian, B. (2017). RNA-Seq methods for transcriptome analysis. Wiley Interdisciplinary Reviews: RNA, 8(1), e1364.
Huptas, C., Scherer, S., & Wenning, M. (2016). Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Research Notes, 9(1), 269.
pubmed: 27176120
pmcid: 4864918
Hurlimann, T., Groisman, I. J., & Godard, B. (2018). Exploring neurologists’ perspectives on the return of next generation sequencing results to their patients: A needed step in the development of guidelines. BMC Medical Ethics, 19(1), 81.
pubmed: 30268121
pmcid: 6162934
Ilyas, M. (2017). Next-generation sequencing in diagnostic pathology. Pathobiology, 84(6), 292–305.
pubmed: 29131018
Jackson, M., Marks, L., May, G. H., & Wilson, J. B. (2018). The genetic basis of disease. Essays in Biochemistry, 62(5), 643–723.
pubmed: 30509934
pmcid: 6279436
Jarinova, O., & Ekker, M. (2012). Regulatory variations in the era of next-generation sequencing: Implications for clinical molecular diagnostics. Human Mutation, 33(7), 1021–1030.
pubmed: 22431194
Jiang, J. C., Stumpferl, S. W., Tiwari, A., Qin, Q., Rodriguez-Quiñones, J. F., & Jazwinski, S. M. (2016). Identification of the target of the retrograde response that mediates replicative lifespan extension in Saccharomyces cerevisiae. Genetics, 204, 659–673.
Jiang, T., Tan, M. S., Tan, L., & Yu, J. T. (2014). Application of next-generation sequencing technologies in Neurology. Annals of Translational Medicine, 2(12), 125.
pubmed: 25568878
pmcid: 4260045
Karch, C. M., & Goate, A. M. (2015). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry, 77(1), 43–51.
pubmed: 24951455
Klein, C. J., Duan, X., & Shy, M. E. (2013). Inherited neuropathies: Clinical overview and update. Muscle & Nerve, 48(4), 604–622.
Klein, C. J., & Foroud, T. M. (2017). Neurology individualized medicine: When to use next-generation sequencing panels. Mayo Clinic Proceedings, 92(2), 292–305.
pubmed: 28160876
Kopetz, S., Desai, J., Chan, E., Hecht, J. R., O'Dwyer, P. J., Maru, D., et al. (2015). Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. Journal of Clinical Oncology, 33(34), 4032.
pubmed: 26460303
pmcid: 4669589
Lanoiselée, H. M., Nicolas, G., Wallon, D., Rovelet-Lecrux, A., Lacour, M., et al. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLOS Medicine, 14, e1002270.
pubmed: 28350801
pmcid: 5370101
Lee, H., Deignan, J. L., Dorrani, N., Strom, S. P., Kantarci, S., Quintero-Rivera, F., et al. (2014). Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA, 312(18), 1880–1887.
pubmed: 25326637
pmcid: 4278636
Lee, S., Ripke, S., Neale, B. et al. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984–994.
pubmed: 23933821
Lesage, S., & Brice, A. (2009). Parkinson's disease: From monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18(R1), R48–R59.
pubmed: 19297401
Lewis, P. A., & Spillane, J. E. (2018). The molecular and clinical pathology of neurodegenerative disease. London: Academic Press.
Liu, L., Xie, J., Sun, X., Luo, K., Qin, Z. S., & Liu. H. (2017). An approach of identifying differential nucleosome regions in multiple samples. BMC Genomics, 18, 135.
pubmed: 28173752
pmcid: 5297132
Lohmann, K., & Klein, C. (2014). Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics, 11(4), 699–707.
pubmed: 25052068
pmcid: 4391380
Mai, H., Fan, W., Wang, Y., Cai, Y., Li, X., Chen, F., et al. (2019). Intranasal administration of miR-146a Agomir rescued the pathological process and cognitive impairment in an AD mouse model. Molecular Therapy-Nucleic Acids, 18, 681–695.
pubmed: 31707205
pmcid: 6849368
Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6, 287–303.
pubmed: 23560931
Martin, H. C., Kim, G. E., Pagnamenta, A. T., Murakami, Y., Carvill, G. L., Meyer, E., et al. (2014). Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human Molecular Genetics, 23(12), 3200–3211.
pubmed: 24463883
pmcid: 4030775
McDonell, L. M., Mirzaa, G. M., Alcantara, D., Schwartzentruber, J., Carter, M. T., Lee, L. J., et al. (2013). Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly–capillary malformation syndrome. Nature Genetics, 45(5), 556.
pubmed: 23542699
pmcid: 4000253
Mero, I. L., Lorentzen, Å. R., Ban, M., Smestad, C., Celius, E. G., Aarseth, J. H., et al. (2010). A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. European Journal of Human Genetics, 18(4), 502.
pubmed: 19888296
Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11(1), 31.
pubmed: 19997069
Miya Shaik, M., Tamargo, I., Abubakar, M., Kamal, M., Greig, N., & Gan, S. (2018). The role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes, 9(4), 174.
pmcid: 5924516
Møller, R. S., Dahl, H. A., & Helbig, I. (2015). The contribution of next generation sequencing to epilepsy genetics. Expert Review of Molecular Diagnostics, 15(12), 1531–1538.
pubmed: 26565596
Myers, C. T., & Mefford, H. C. (2015). Advancing epilepsy genetics in the genomic era. Genome Medicine, 7(1), 91.
pubmed: 26302787
pmcid: 4549122
Oates, S., Tang, S., Rosch, R., Lear, R., Hughes, E. F., Williams, R. E., et al. (2018). Incorporating epilepsy genetics into clinical practice: A 360 evaluation. NPJ Genomic Medicine, 3(1), 13.
pubmed: 29760947
pmcid: 5945675
Olson, H., Shen, Y., Avallone, J., Sheidley, B. R., Pinsky, R., Bergin, A. M., et al. (2014). Copy number variation plays an important role in clinical epilepsy. Annals of Neurology, 75(6), 943–958.
pubmed: 24811917
pmcid: 4487364
Pang, S. Y. Y., Teo, K. C., Hsu, J. S., Chang, R. S. K., Li, M., Sham, P. C., et al. (2017). The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: A review. Translational Neurodegeneration, 6(1), 27.
pubmed: 29046784
pmcid: 5639582
Pang, S. Y. Y., Ho, P. W. L., Liu, H. F., Leung, C. T., Li, L., Chang, E. E. S., et al. (2019). The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Translational Neurodegeneration, 8(1), 23.
pubmed: 31428316
pmcid: 6696688
Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. Journal of Clinical Medicine, 9(1), 132.
pmcid: 7019349
Ramagopalan, S. V., Dyment, D. A., Cader, M. Z., Morrison, K. M., Disanto, G., Morahan, J. M., et al. (2011). Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Annals of Neurology, 70(6), 881–886.
pubmed: 22190362
Reeve, A. K., Ludtmann, M. H., Angelova, P. R., Simcox, E. M., Horrocks, M. H., Klenerman, D., et al. (2015). Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons. Cell Death & Disease, 6(7), e1820.
Rexach, J., Lee, H., Martinez-Agosto, J. A., Németh, A. H., & Fogel, B. L. (2019). Clinical application of next-generation sequencing to the practice of neurology. The Lancet Neurology, 18(5), 492–503.
pubmed: 30981321
pmcid: 7055532
Ritchie, K., Ritchie, C. W., Yaffe, K., Skoog, I., & Scarmeas, N. (2015). Is late-onset Alzheimer's disease really a disease of midlife? Alzheimer's & Dementia: Translational Research & Clinical Interventions, 1(2), 122–130.
Rossor, A. M., Evans, M. R., & Reilly, M. M. (2015). A practical approach to the genetic neuropathies. Practical Neurology, 15(3), 187–198.
pubmed: 25898997
Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356), 348.
pubmed: 21776081
Saitsu, H., Kato, M., Koide, A., Goto, T., Fujita, T., Nishiyama, K., et al. (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Annals of Neurology, 72(2), 298–300.
pubmed: 22926866
Sawyer, S. L., Schwartzentruber, J., Beaulieu, C. L., Dyment, D., Smith, A., Chardon, J. W., et al. (2014). Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Human Mutation, 35(1), 45–49.
pubmed: 24108619
Scholz, S., & Bras, J. (2015). Genetics underlying atypical parkinsonism and related neurodegenerative disorders. International Journal of Molecular Sciences, 16(10), 24629–24655.
pubmed: 26501269
pmcid: 4632769
Shanaj, S., & Donlin, L. T. (2019). Synovial tissue: Cellular and molecular phenotyping. Current Rheumatology Reports, 21(10), 52.
pubmed: 31468238
Shi, Z., Wang, Y., Liu, S., Liu, M., Liu, S., Zhou, Y., et al. (2015). Clinical and neuroimaging characterization of Chinese dementia patients with PSEN1 and PSEN2 mutations. Dementia and Geriatric Cognitive Disorders, 39(1–2), 32–40.
pubmed: 25323700
Siuda, J., Fujioka, S. H., & Wszolek, Z. K. (2014). Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism & Related Disorders, 20, 957–964.
Soden, S. E., Saunders, C. J., Willig, L. K., Farrow, E. G., Smith, L. D., Petrikin, J. E., et al. (2014). Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Science Translational Medicine, 6(265), 265ra168.
pubmed: 25473036
pmcid: 4286868
Spratt, D. E., Martinez-Torres, R. J., Noh, Y. J., Mercier, P., Manczyk, N., Barber, K. R., et al. (2013). A molecular explanation for the recessive nature of Parkin-linked Parkinson’s disease. Nature Communications, 4, 1983.
pubmed: 23770917
pmcid: 3709501
Srivastava, S., Cohen, J. S., Vernon, H., Barañano, K., McClellan, R., Jamal, L., et al. (2014). Clinical whole exome sequencing in child neurology practice. Annals of Neurology, 76(4), 473–483.
pubmed: 25131622
Stosser, M. B., Lindy, A. S., Butler, E., Retterer, K., Piccirillo-Stosser, C. M., Richard, G., et al. (2018). High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genetics in Medicine, 20(4), 403.
pubmed: 28837158
Sun, Z., Cunningham, J., Slager, S., & Kocher, J. P. (2015). Base resolution methylome profiling: Considerations in platform selection, data preprocessing and analysis. Epigenomics, 7(5), 813–828.
pubmed: 26366945
pmcid: 4790440
Ulahannan, D., Kovac, M. B., Mulholland, P. J., Cazier, J. B., & Tomlinson, I. (2013). Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. British Journal of Cancer, 109(4), 827.
pubmed: 23887607
pmcid: 3749581
Van den Bossche, T., Sleegers, K., Cuyvers, E., Engelborghs, S., Sieben, A., De Roeck, A., et al. (2016). Phenotypic characteristics of Alzheimer patients carrying an ABCA7 mutation. Neurology, 86(23), 2126–2133.
pubmed: 27037232
pmcid: 4917260
Van Giau, V., & An, S. S. A. (2019). Epitope Mapping Immunoassay Analysis of the Interaction between β-Amyloid and Fibrinogen. International Journal of MOLECULAR Sciences, 20(3), 496.
pmcid: 6387197
Van Giau, V., Senanarong, V., Bagyinszky, E., Limwongse, C., An, S. S. A., & Kim, S. (2018a). Identification of a novel mutation in APP gene in a Thai subject with early-onset Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 14, 3015.
pubmed: 30510423
pmcid: 6231518
Van Giau, V., Bagyinszky, E., Yang, Y. S., Youn, Y. C., An, S. S. A., & Kim, S. Y. (2019). Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing. Scientific Reports, 9(1), 8368.
pubmed: 31182772
pmcid: 6557896
Van Giau, V., Bagyinszky, E., An, S. S. A., & Kim, S. Y. (2015). Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatric Disease and Treatment, 11, 1723.
pubmed: 26213471
pmcid: 4509527
Van Giau, V., Wang, M. J., Bagyinszky, E., Youn, Y. C., An, S. S. A., & Kim, S. (2018b). Novel PSEN1 p. Gly417Ala mutation in a Korean patient with early-onset Alzheimer's disease with parkinsonism. Neurobiology of Aging, 72, 188–e13.
pubmed: 30180983
Vardarajan, B. N., Ghani, M., Kahn, A., Sheikh, S., Sato, C., Barral, S., et al. (2015). Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Annals of Neurology, 78(3), 487–498.
pubmed: 26101835
pmcid: 4546546
Vázquez, R. G., Sedes, P. R., Fariña, M. M., Marqués, A. M., & Velasco, M. F. (2013). Respiratory management in the patient with spinal cord injury. BioMed Research International, 2013, 1–12.
Veeramah, K. R., O'Brien, J. E., Meisler, M. H., Cheng, X., Dib-Hajj, S. D., Waxman, S. G., et al. (2012). De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. The American Journal of Human Genetics, 90(3), 502–510.
pubmed: 22365152
Wang, J., Lin, Z. J., Liu, L., Xu, H. Q., Shi, Y. W., Yi, Y. H., et al. (2017). Epilepsy-associated genes. Seizure, 44, 11–20.
pubmed: 28007376
Wang, W., Wang, C., Dawson, D. B., Thorland, E. C., Lundquist, P. A., Eckloff, B. W., et al. (2016). Target-enrichment sequencing and copy number evaluation in inherited polyneuropathy. Neurology, 86(19), 1762–1771.
pubmed: 27164712
pmcid: 4862246
Wattjes, M. P., Steenwijk, M. D., & Stangel, M. (2015). MRI in the diagnosis and monitoring of multiple sclerosis: An update. Clinical Neuroradiology, 25(2), 157–165.
pubmed: 26198879
Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279.
pubmed: 15034553
pmcid: 3590000
Winblad, B., Palmer, K., Kivipelto, M., & Jelic, V. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240–246.
Xue, J., Schmidt, S. V., Sander, J., & Draffehn, A. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288
pubmed: 24530056
pmcid: 3991396
Xue, Y., Ankala, A., Wilcox, W. R., & Hegde, M. R. (2015). Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: Single-gene, gene panel, or exome/genome sequencing. Genetics in Medicine, 17(6), 444.
pubmed: 25232854
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., et al. (2013). Clinical whole-exome sequencing for the diagnosis of mendelian disorders. New England Journal of Medicine, 369(16), 1502–1511.
Yang, Y., Muzny, D. M., Xia, F., Niu, Z., Person, R., Ding, Y., et al. (2014). Molecular findings among patients referred for clinical whole-exome sequencing. JAMA, 312(18), 1870–1879.
pubmed: 25326635
pmcid: 4326249
Zaman, A., Wu, W., & Bivona, T. G. (2019). Targeting oncogenic BRAF: Past, present, and future. Cancers, 11(8), 1197.
pmcid: 6721448
Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38(3), 95–109.
pubmed: 21477781
pmcid: 3076108
Zingg, J. M., & Daunert, S. (2018). Trinucleotide rolling circle amplification: A novel method for the detection of RNA and DNA. Methods and Protocols, 1(2), 15.
pmcid: 6526412