Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 05 2020
Historique:
received: 16 01 2020
accepted: 17 04 2020
entrez: 16 5 2020
pubmed: 16 5 2020
medline: 1 9 2020
Statut: epublish

Résumé

Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors develop resistance and relapse. In contrast to the substantial body of research on the molecular mechanisms of resistance, understanding of how resistance evolves remains limited. Using an experimental model of ALK positive NSCLC, we explored the evolution of resistance to different clinical ALK inhibitors. We found that resistance can originate from heterogeneous, weakly resistant subpopulations with variable sensitivity to different ALK inhibitors. Instead of the commonly assumed stochastic single hit (epi) mutational transition, or drug-induced reprogramming, we found evidence for a hybrid scenario involving the gradual, multifactorial adaptation to the inhibitors through acquisition of multiple cooperating genetic and epigenetic adaptive changes. Additionally, we found that during this adaptation tumor cells might present unique, temporally restricted collateral sensitivities, absent in therapy naïve or fully resistant cells, suggesting the potential for new therapeutic interventions, directed against evolving resistance.

Identifiants

pubmed: 32409712
doi: 10.1038/s41467-020-16212-w
pii: 10.1038/s41467-020-16212-w
pmc: PMC7224215
doi:

Substances chimiques

Antineoplastic Agents 0
Lapatinib 0VUA21238F
ALK protein, human EC 2.7.10.1
Anaplastic Lymphoma Kinase EC 2.7.10.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Video-Audio Media

Langues

eng

Sous-ensembles de citation

IM

Pagination

2393

Subventions

Organisme : NCI NIH HHS
ID : K12 CA076917
Pays : United States

Références

Sasaki, T., Rodig, S. J., Chirieac, L. R. & Janne, P. A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer 46, 1773–1780 (2010).
pubmed: 20418096 pmcid: 2888755 doi: 10.1016/j.ejca.2010.04.002
Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).
pubmed: 25087573 pmcid: 5528620 doi: 10.1016/j.molonc.2014.06.005
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).
pubmed: 17109012 doi: 10.1038/nrc2013
Bozic, I. & Nowak, M. A. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc. Natl Acad. Sci. USA 111, 15964–15968 (2014).
pubmed: 25349424 doi: 10.1073/pnas.1412075111
Wodarz, D. & Komarova, N. L. Emergence and prevention of resistance against small molecule inhibitors. Semin. Cancer Biol. 15, 506–514 (2005).
pubmed: 16154360 doi: 10.1016/j.semcancer.2005.07.002
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).
pubmed: 20371346 pmcid: 2851638 doi: 10.1016/j.cell.2010.02.027
Pisco, A. O. et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4, 2467 (2013).
pubmed: 24045430 pmcid: 4657953 doi: 10.1038/ncomms3467
Risom, T. et al. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat. Commun. 9, 3815 (2018).
pubmed: 30232459 pmcid: 6145927 doi: 10.1038/s41467-018-05729-w
Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).
pubmed: 28607484 pmcid: 5542814 doi: 10.1038/nature22794
Dhawan, A. et al. Collateral sensitivity networks reveal evolutionary instability and novel treatment strategies in ALK mutated non-small cell lung cancer. Sci. Rep. 7, 1232 (2017).
pubmed: 28450729 pmcid: 5430816 doi: 10.1038/s41598-017-00791-8
Peters, S. et al. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).
pubmed: 28586279 doi: 10.1056/NEJMoa1704795
Shaw, A. T. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 18, 1590–1599 (2017).
pubmed: 29074098 pmcid: 5777233 doi: 10.1016/S1470-2045(17)30680-0
McInnes, L., Healy, J. J., Saul, N. & Großberger, L. Umap: Uniform manifold approximation and projection for dimension reduction. J. Open Source Softw. 3, 861 (2018).
Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).
pubmed: 30659188 pmcid: 6338734 doi: 10.1038/s41467-018-08098-6
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
pubmed: 22258609 pmcid: 3367003 doi: 10.1038/nature10762
Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).
pubmed: 23805382 pmcid: 3691570 doi: 10.7554/eLife.00747
Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).
pubmed: 17143318 doi: 10.1038/nrmicro1557
Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).
pubmed: 15308767 doi: 10.1126/science.1099390
Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).
pubmed: 29088702 pmcid: 5933935 doi: 10.1038/nature24297
Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 e819 (2018).
pubmed: 30017245 doi: 10.1016/j.cell.2018.06.025
Bhang, H. E. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).
pubmed: 25849130 doi: 10.1038/nm.3841
Foo, J. & Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–20 (2014).
pubmed: 24681298 doi: 10.1016/j.jtbi.2014.02.025
Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).
pubmed: 27432227 pmcid: 5050111 doi: 10.1158/2159-8290.CD-16-0596
Lovly, C. M. & Shaw, A. T. Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies. Clin. Cancer Res. 20, 2249–2256 (2014).
pubmed: 24789032 pmcid: 4029617 doi: 10.1158/1078-0432.CCR-13-1610
Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).
pubmed: 24310612 doi: 10.1126/science.1241328
Mancini, M. & Yarden, Y. Mutational and network level mechanisms underlying resistance to anti-cancer kinase inhibitors. Semin. Cell Dev. Biol. 50, 164–176 (2016).
pubmed: 26428295 doi: 10.1016/j.semcdb.2015.09.018
Zou, H. Y. et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28, 70–81 (2015).
pubmed: 26144315 pmcid: 4504786 doi: 10.1016/j.ccell.2015.05.010
Zhang, G. et al. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Sci. Signal. 9, rs12 (2016).
pubmed: 27811184 pmcid: 5377910 doi: 10.1126/scisignal.aaf5011
Katayama, R. et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl Acad. Sci. USA 108, 7535–7540 (2011).
pubmed: 21502504 doi: 10.1073/pnas.1019559108
Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).
pubmed: 22235099 pmcid: 3311875 doi: 10.1158/1078-0432.CCR-11-2906
Paasinen-Sohns, A. et al. Single-center experience with a targeted next generation sequencing assay for assessment of relevant somatic alterations in solid tumors. Neoplasia 19, 196–206 (2017).
pubmed: 28161563 pmcid: 5293722 doi: 10.1016/j.neo.2017.01.003
Fukuda, K. et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 9, 1658–1670 (2019).
Kogita, A. et al. Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int J. Oncol. 45, 1430–1436 (2014).
pubmed: 25096400 pmcid: 4151805 doi: 10.3892/ijo.2014.2574
Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
doi: 10.2307/2389364
Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).
pubmed: 29180633 pmcid: 5703947 doi: 10.1038/s41467-017-01968-5
Bacevic, K. et al. Spatial competition constrains resistance to targeted cancer therapy. Nat. Commun. 8, 1995 (2017).
pubmed: 29222471 pmcid: 5722825 doi: 10.1038/s41467-017-01516-1
Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).
pubmed: 19487300 pmcid: 3728826 doi: 10.1158/0008-5472.CAN-08-3658
Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).
pubmed: 24213474 pmcid: 4010142 doi: 10.1038/nrc3606
Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).
pubmed: 23302800 pmcid: 3930354 doi: 10.1038/nature11814
Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).
pubmed: 25600339 pmcid: 4326539 doi: 10.1016/j.ccell.2014.11.018
Sieber, O. M., Tomlinson, S. R. & Tomlinson, I. P. Tissue, cell and stage specificity of (epi)mutations in cancers. Nat. Rev. Cancer 5, 649–655 (2005).
pubmed: 16056260 doi: 10.1038/nrc1674
Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).
pubmed: 28256574 pmcid: 5823237 doi: 10.1038/nrc.2017.5
Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Cancer associated fibroblasts and alectinib switch the evolutionary games that non-small cell lung cancer plays. Nat. Ecol. Evol. 3, 450–456 (2018).
Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).
pubmed: 25079331 pmcid: 4184961 doi: 10.1038/nature13556
Yoon, N., Vander Velde, R., Marusyk, A. & Scott, J. G. Optimal therapy scheduling based on a pair of collaterally sensitive drugs. Bull. Math Biol. 80, 1776–1809 (2018).
Basanta, D., Gatenby, R. A. & Anderson, A. R. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm. 9, 914–921 (2012).
pubmed: 22369188 pmcid: 3325107 doi: 10.1021/mp200458e
Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).
pubmed: 26780609 pmcid: 4934603 doi: 10.1038/ng.3489
Kessler, D. A., Austin, R. H. & Levine, H. Resistance to chemotherapy: patient variability and cellular heterogeneity. Cancer Res. 74, 4663–4670 (2014).
pubmed: 25183790 doi: 10.1158/0008-5472.CAN-14-0118
Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).
pubmed: 20129249 pmcid: 2980857 doi: 10.1016/j.ccr.2009.11.022
Lovly, C. M. et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 20, 1027–1034 (2014).
pubmed: 25173427 pmcid: 4159407 doi: 10.1038/nm.3667
Hong, S. P. et al. Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy. Nat. Commun. 10, 3840 (2019).
pubmed: 31477698 pmcid: 6718416 doi: 10.1038/s41467-019-11721-9
Pisco, A. O. & Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. Br. J. Cancer 112, 1725–1732 (2015).
pubmed: 25965164 pmcid: 4647245 doi: 10.1038/bjc.2015.146
Darwin, C. On the Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life (J. Murray, 1859).
Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).
pubmed: 10611684 doi: 10.1016/S0962-8924(99)01661-X
Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e13 (2018).
pubmed: 29681456 pmcid: 29681456 doi: 10.1016/j.cell.2018.03.041
Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).
Marusyk, A., Wheeler, L. J., Mathews, C. K. & DeGregori, J. p53 mediates senescence-like arrest induced by chronic replicational stress. Mol. Cell. Biol. 27, 5336–5351 (2007).
pubmed: 17515610 pmcid: 1952086 doi: 10.1128/MCB.01316-06
Taiyun Wei and Viliam, S. R package corrplot: visualization of a correlation matrix. GitHub https://github.com/taiyun/corrplot (2017).
Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).
pubmed: 25969447 pmcid: 4489295 doi: 10.1093/nar/gkv468
Campello, R. J. G. B., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates (eds Pei, J. et al.) 160–172 (Springer, 2013).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 16199517 doi: 10.1073/pnas.0506580102
Bauer, D. E., Canver, M. C. & Orkin, S. H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J. Vis. Exp. 95, e52118 (2015).
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548 pmcid: 24157548 doi: 10.1038/nprot.2013.143
Walt, Svd, Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).
doi: 10.1109/MCSE.2011.37

Auteurs

Robert Vander Velde (R)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.
Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.

Nara Yoon (N)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.

Viktoriya Marusyk (V)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Arda Durmaz (A)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

Andrew Dhawan (A)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.

Daria Miroshnychenko (D)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Diego Lozano-Peral (D)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.
Supercomputer and Bioinnovation Center, University of Málaga, Málaga, Spain.

Bina Desai (B)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.
University of South Florida Cancer Biology PhD Program, Tampa, FL, USA.

Olena Balynska (O)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Jan Poleszhuk (J)

Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.

Liu Kenian (L)

Department of Pathology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Mingxiang Teng (M)

Department of Biostatistic and Bioinformatics, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Mohamed Abazeed (M)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.

Omar Mian (O)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.

Aik Choon Tan (AC)

Department of Biostatistic and Bioinformatics, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Eric Haura (E)

Department of Thoracic Oncology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.

Jacob Scott (J)

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA. scottj10@ccf.org.
Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA. scottj10@ccf.org.

Andriy Marusyk (A)

Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA. Andriy.Marusyk@moffitt.org.
Department of Molecular Medicine, University of South Florida, Tampa, FL, USA. Andriy.Marusyk@moffitt.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH