Variants in IL23R-C1orf141 and ADO-ZNF365-EGR2 are associated with susceptibility to Vogt-Koyanagi-Harada disease in Japanese population.
Adult
Alleles
Asian People
/ genetics
Carotenoids
Case-Control Studies
DNA-Binding Proteins
/ genetics
Early Growth Response Protein 2
/ genetics
Female
Gene Frequency
Genetic Predisposition to Disease
Genome-Wide Association Study
HLA-DR4 Antigen
/ genetics
Humans
Japan
Male
Middle Aged
Oxygenases
/ genetics
Polymorphism, Single Nucleotide
Receptors, Interleukin
/ genetics
Transcription Factors
/ genetics
Uveomeningoencephalitic Syndrome
/ genetics
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
05
02
2020
accepted:
05
05
2020
entrez:
22
5
2020
pubmed:
22
5
2020
medline:
13
8
2020
Statut:
epublish
Résumé
Vogt-Koyanagi-Harada (VKH) disease is a systemic inflammatory disorder that affects pigment cell-containing organs such as the eye (e.g., chronic and/or recurrent granulomatous panuveitis). While the exact etiology and pathogenic mechanism of VKH disease are unclear, HLA-DR4 alleles have been documented to be strongly associated with VKH disease in various ethnic groups. Recently, a genome-wide association study (GWAS) found two new genetic risk factors (IL23R-C1orf141 and ADO-ZNF365-EGR2) in a non-HLA region from a Han Chinese population. In this study, we replicated these GWAS findings in a Japanese population. A total of 1,643 Japanese samples (380 cases with VKH disease and 1,263 healthy controls) were recruited. We assessed four single nucleotide polymorphisms (SNPs) shown in previous GWAS: rs78377598 and rs117633859 in IL23R-C1orf141, and rs442309 and rs224058 in ADO-ZNF365-EGR2. A significant allelic association with VKH disease was observed for all of the four SNPs (rs78377598: pc = 0.0057; rs117633859: pc = 0.0017; rs442309: pc = 0.021; rs224058: pc = 0.035). In genotypic association analysis, the minor alleles of IL23R-C1orf141 rs78377598 and rs117633859 had the strongest association with disease susceptibility under the additive model (pc = 0.0075 and pc = 0.0026, respectively). The minor alleles of ADO-ZNF365-EGR2 rs442309 and rs224058 were most strongly associated with disease susceptibility under the dominant model (pc = 0.00099 and pc = 0.0023, respectively). The meta-analysis of the current and previous studies found that all of the four SNPs exhibited a significantly strong association with VKH disease (meta-p < 0.00001: rs78377598, meta-odds ratio (OR) = 1.69; rs1176338, meta-OR = 1.82; rs442309, meta-OR = 1.34; rs224058, meta-OR = 1.33). In summary, our study replicated significant associations with VKH disease susceptibility reported in a previous GWAS. Thus, the IL23R-C1orf141 and ADO-ZNF365-EGR2 loci may play important roles in the development of VKH disease through genetic polymorphisms.
Identifiants
pubmed: 32437414
doi: 10.1371/journal.pone.0233464
pii: PONE-D-20-03319
pmc: PMC7241744
doi:
Substances chimiques
DNA-Binding Proteins
0
EGR2 protein, human
0
Early Growth Response Protein 2
0
HLA-DR4 Antigen
0
IL23R protein, human
0
Receptors, Interleukin
0
Transcription Factors
0
ZNF365 protein, human
0
beta-apocarotenoid-14',13'-dioxygenase
0
Carotenoids
36-88-4
Oxygenases
EC 1.13.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0233464Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Immunol. 2010 Jan;11(1):41-4
pubmed: 20016509
Nat Genet. 2012 Nov;44(11):1222-6
pubmed: 23042114
Hum Immunol. 1994 Mar;39(3):169-76
pubmed: 8026985
J Ophthalmic Inflamm Infect. 2014 Jul 22;4:20
pubmed: 25097674
Jpn J Ophthalmol. 2012 Sep;56(5):432-5
pubmed: 22752308
Invest Ophthalmol Vis Sci. 1994 Oct;35(11):3890-6
pubmed: 7928186
Sci Rep. 2014 Nov 10;4:6887
pubmed: 25382027
PLoS One. 2011;6(7):e22688
pubmed: 21818367
Jpn J Ophthalmol. 2007 Jan-Feb;51(1):41-4
pubmed: 17295139
Science. 2006 Dec 1;314(5804):1461-3
pubmed: 17068223
Int Ophthalmol. 2007 Apr-Jun;27(2-3):87-95
pubmed: 17253112
Mol Vis. 2006 Dec 20;12:1601-5
pubmed: 17200659
Nat Genet. 2009 Feb;41(2):199-204
pubmed: 19169254
Int J Ophthalmol. 2019 Feb 18;12(2):207-211
pubmed: 30809474
Nat Commun. 2015 Apr 09;6:6793
pubmed: 25854761
Am J Ophthalmol. 2006 Jun;141(6):1140-1142
pubmed: 16765691
J Clin Invest. 2006 May;116(5):1218-22
pubmed: 16670765
Br J Ophthalmol. 2016 Mar;100(3):436-42
pubmed: 26628628
Semin Ophthalmol. 2005 Jul-Sep;20(3):183-90
pubmed: 16282153
Nat Genet. 2011 Jul 10;43(8):761-7
pubmed: 21743469
Nat Genet. 2010 Aug;42(8):703-6
pubmed: 20622879
Nat Genet. 2011 Jun 12;43(7):690-4
pubmed: 21666691
Nat Genet. 2007 Nov;39(11):1329-37
pubmed: 17952073
Ophthalmology. 2007 Mar;114(3):606-14
pubmed: 17123618
Asian J Urol. 2018 Oct;5(4):205-214
pubmed: 30364478
Am J Ophthalmol. 2001 May;131(5):647-52
pubmed: 11336942
Nat Genet. 2008 Aug;40(8):955-62
pubmed: 18587394
Exp Eye Res. 2005 Feb;80(2):273-80
pubmed: 15670805
Hum Mol Genet. 2010 Jun 1;19(11):2313-20
pubmed: 20194224
Am J Hum Genet. 2007 Feb;80(2):273-90
pubmed: 17236132
Surv Ophthalmol. 1995 Jan-Feb;39(4):265-92
pubmed: 7725227
J Immunol. 2000 Dec 15;165(12):7323-9
pubmed: 11120868
Am J Ophthalmol. 2007 Aug;144(2):260-5
pubmed: 17533104
Nat Genet. 2007 May;39(5):596-604
pubmed: 17435756
Nat Genet. 2009 Feb;41(2):216-20
pubmed: 19122664
Mucosal Immunol. 2009 Sep;2(5):403-11
pubmed: 19587639
Nat Genet. 2017 Mar;49(3):438-443
pubmed: 28166214
JAMA. 2000 Apr 19;283(15):2008-12
pubmed: 10789670
Nature. 2015 Oct 1;526(7571):68-74
pubmed: 26432245
JAMA. 2015 Apr 28;313(16):1657-65
pubmed: 25919529
Nat Genet. 2014 Sep;46(9):1007-11
pubmed: 25108386
Exp Eye Res. 2000 Oct;71(4):361-9
pubmed: 10995557
Ocul Immunol Inflamm. 2011 Jun;19(3):202-5
pubmed: 21595536
Retina. 1996;16(2):160-1
pubmed: 8724962