Comparative transcriptomics of Diuraphis noxia and Schizaphis graminum fed wheat plants containing different aphid-resistance genes.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2020
Historique:
received: 28 08 2019
accepted: 26 04 2020
entrez: 23 5 2020
pubmed: 23 5 2020
medline: 1 8 2020
Statut: epublish

Résumé

The molecular bases of aphid virulence to aphid crop plant resistance genes are poorly understood. The Russian wheat aphid, Diuraphis noxia, (Kurdjumov), and the greenbug, Schizaphis graminum (Rondani), are global pest of cereal crops. Each species damages barley, oat, rye and wheat, but S. graminum includes fescue, maize, rice and sorghum in its host range. This study was conducted to compare and contrast the transcriptomes of S. graminum biotype I and D. noxia biotype 1 when each ingested phloem from leaves of varieties of bread wheat, Triticum aestivum L., containing no aphid resistance (Dn0), resistance to D. noxia biotype 1 (Dn4), or resistance to both D. noxia biotype 1 and S. graminum biotype I (Dn7, wheat genotype 94M370). Gene ontology enrichments, k-means analysis and KEGG pathway analysis indicated that 94M370 plants containing the Dn7 D. noxia resistance gene from rye had stronger effects on the global transcriptional profiles of S. graminum and D. noxia relative to those fed Dn4 plants. S. graminum responds to ingestion of phloem sap from 94M370 plants by expression of unigenes coding for proteins involved in DNA and RNA repair, and delayed tissue and structural development. In contrast, D. noxia displays a completely different transcriptome after ingesting phloem sap from Dn4 or 94M370 plants, consisting of unigenes involved primarily in detoxification, nutrient acquisition and structural development. These variations in transcriptional responses of D. noxia and S. graminum suggest that the underlying evolutionary mechanism(s) of virulence in these aphids are likely species specific, even in cases of cross resistance.

Identifiants

pubmed: 32442185
doi: 10.1371/journal.pone.0233077
pii: PONE-D-19-24276
pmc: PMC7313535
doi:

Substances chimiques

Insect Proteins 0
Plant Proteins 0

Types de publication

Comparative Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0233077

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Bull Entomol Res. 2019 Feb;109(1):90-101
pubmed: 29665868
Curr Opin Insect Sci. 2018 Apr;26:41-49
pubmed: 29764659
J Econ Entomol. 2003 Jun;96(3):673-9
pubmed: 12852604
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
J Econ Entomol. 2016 Apr;109(2):907-12
pubmed: 26803815
J Econ Entomol. 2011 Oct;104(5):1736-41
pubmed: 22066205
J Econ Entomol. 2003 Oct;96(5):1571-6
pubmed: 14650533
Mol Ecol. 2016 Sep;25(17):4197-215
pubmed: 27474484
J Chem Ecol. 2010 Mar;36(3):260-76
pubmed: 20229216
J Proteomics. 2012 Apr 3;75(7):2252-68
pubmed: 22348819
C R Biol. 2010 Jun-Jul;333(6-7):516-23
pubmed: 20541163
J Econ Entomol. 2014 Jun;107(3):1274-83
pubmed: 25026693
J Econ Entomol. 2000 Jun;93(3):1000-4
pubmed: 10902362
J Econ Entomol. 2009 Jun;102(3):1291-300
pubmed: 19610450
PLoS One. 2016 Jan 27;11(1):e0146809
pubmed: 26815857
J Econ Entomol. 2002 Apr;95(2):448-57
pubmed: 12020026
PLoS Comput Biol. 2016 Jun 21;12(6):e1004957
pubmed: 27327495
Mol Ecol Resour. 2008 Nov;8(6):1189-201
pubmed: 21586006
Sci Rep. 2014 May 27;4:5059
pubmed: 24862828
BMC Genomics. 2015 Jun 05;16:429
pubmed: 26044338
J Econ Entomol. 2009 Oct;102(5):1954-9
pubmed: 19886462
Pest Manag Sci. 2014 Apr;70(4):528-40
pubmed: 24282145
Genome Biol. 2010;11(2):R14
pubmed: 20132535
PLoS One. 2013 Nov 14;8(11):e79612
pubmed: 24244529
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5
pubmed: 17526522
J Econ Entomol. 2005 Oct;98(5):1698-703
pubmed: 16334342
PLoS One. 2011;6(7):e21800
pubmed: 21789182
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
PLoS One. 2018 Jan 18;13(1):e0191678
pubmed: 29346432
J Econ Entomol. 2015 Apr;108(2):798-804
pubmed: 26470192
J Econ Entomol. 2010 Jun;103(3):887-97
pubmed: 20568636
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Biometrics. 1997 Sep;53(3):983-97
pubmed: 9333350
Bioinformatics. 2011 Mar 15;27(6):863-4
pubmed: 21278185
Curr Opin Plant Biol. 2011 Aug;14(4):422-8
pubmed: 21684190
J Econ Entomol. 2006 Jun;99(3):959-65
pubmed: 16813337
Pest Manag Sci. 2012 Nov;68(11):1431-7
pubmed: 22945853

Auteurs

Lina Aguirre Rojas (LA)

Department of Entomology, Kansas State University, Manhattan, KS, United States of America.

Erin Scully (E)

Stored Product Insect and Engineering Unit, USDA-ARS Centerfor Grain and Animal Health Research, Manhattan, KS, United States of America.

Laramy Enders (L)

Department of Entomology, Purdue University, West Lafayette, IN, United States of America.

Alicia Timm (A)

Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America.

Deepak Sinha (D)

Department of Entomology, Kansas State University, Manhattan, KS, United States of America.
SAGE University, Indore, India.

Charles Michael Smith (CM)

Department of Entomology, Kansas State University, Manhattan, KS, United States of America.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH