Transcript isoform sequencing reveals widespread promoter-proximal transcriptional termination in Arabidopsis.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 05 2020
Historique:
received: 24 06 2019
accepted: 29 04 2020
entrez: 24 5 2020
pubmed: 24 5 2020
medline: 25 8 2020
Statut: epublish

Résumé

RNA polymerase II (RNAPII) transcription converts the DNA sequence of a single gene into multiple transcript isoforms that may carry alternative functions. Gene isoforms result from variable transcription start sites (TSSs) at the beginning and polyadenylation sites (PASs) at the end of transcripts. How alternative TSSs relate to variable PASs is poorly understood. Here, we identify both ends of RNA molecules in Arabidopsis thaliana by transcription isoform sequencing (TIF-seq) and report four transcript isoforms per expressed gene. While intragenic initiation represents a large source of regulated isoform diversity, we observe that ~14% of expressed genes generate relatively unstable short promoter-proximal RNAs (sppRNAs) from nascent transcript cleavage and polyadenylation shortly after initiation. The location of sppRNAs correlates with the position of promoter-proximal RNAPII stalling, indicating that large pools of promoter-stalled RNAPII may engage in transcriptional termination. We propose that promoter-proximal RNAPII stalling-linked to premature transcriptional termination may represent a checkpoint that governs plant gene expression.

Identifiants

pubmed: 32444691
doi: 10.1038/s41467-020-16390-7
pii: 10.1038/s41467-020-16390-7
pmc: PMC7244574
doi:

Substances chimiques

Arabidopsis Proteins 0
Chromatin 0
Cleavage Stimulation Factor 0
CstF77 protein, Arabidopsis 0
Protein Isoforms 0
RNA, Plant 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2589

Références

Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130 pmcid: 4782187 doi: 10.1038/nrm3953
Portin, P. & Wilkins, A. The evolving definition of the term “Gene”. Genetics 205, 1353–1364 (2017).
pubmed: 28360126 pmcid: 5378099 doi: 10.1534/genetics.116.196956
Pumplin, N. et al. DNA methylation influences the expression of DICER-LIKE4 isoforms, which encode proteins of alternative localization and function. Plant Cell 28, 2786–2804 (2016).
pubmed: 27956586 pmcid: 5155348 doi: 10.1105/tpc.16.00554
Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1, 40–51 (2012).
pubmed: 23801666 doi: 10.1002/wdev.21
Trcek, T., Larson, D. R., Moldón, A., Query, C. C. & Singer, R. H. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).
pubmed: 22196726 pmcid: 3286490 doi: 10.1016/j.cell.2011.11.051
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424 doi: 10.1038/nrm.2017.103
Jensen, T. H., Jacquier, A. & Libri, D. Dealing with pervasive transcription. Mol. Cell 52, 473–484 (2013).
pubmed: 24267449 doi: 10.1016/j.molcel.2013.10.032
Kindgren, P., Ard, R., Ivanov, M. & Marquardt, S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat. Commun. 9, 4561 (2018).
pubmed: 30385760 pmcid: 6212407 doi: 10.1038/s41467-018-07010-6
Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526, 453–457 (2015).
pubmed: 26444240 pmcid: 4807020 doi: 10.1038/nature15258
Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).
pubmed: 25650798 doi: 10.1038/nrm3941
Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).
pubmed: 27284201 pmcid: 5144996 doi: 10.1126/science.aad9926
Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35, 553–564 (2019).
pubmed: 31213387 doi: 10.1016/j.tig.2019.05.005
Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet. 19, 518–529 (2018).
pubmed: 29748575 doi: 10.1038/s41576-018-0013-2
Marquardt, S. et al. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157, 1712–1723 (2014).
pubmed: 24949978 pmcid: 4090027 doi: 10.1016/j.cell.2014.04.036
Ibrahim, M. M. et al. Determinants of promoter and enhancer transcription directionality in metazoans. Nat. Commun. 9, 4472 (2018).
pubmed: 30367057 pmcid: 6203779 doi: 10.1038/s41467-018-06962-z
Wu, A. C. K. & Van Werven, F. J. Transcribe this way: Rap1 confers promoter directionality by repressing divergent transcription. Transcription 10, 164–170 (2019).
pubmed: 31057041 pmcid: 6602560 doi: 10.1080/21541264.2019.1608716
Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).
pubmed: 23792564 pmcid: 3720719 doi: 10.1038/nature12349
Oh, J.-M. et al. U1 snRNP telescripting regulates a size–function-stratified human genome. Nat. Struct. Mol. Biol. 24, 993–999 (2017).
pubmed: 28967884 pmcid: 5685549 doi: 10.1038/nsmb.3473
Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).
pubmed: 31626751 doi: 10.1016/j.molcel.2019.09.017
Shi, Y. & Manley, J. L. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev. 29, 889–897 (2015).
pubmed: 25934501 pmcid: 4421977 doi: 10.1101/gad.261974.115
Mayer, A., Landry, H. M. & Churchman, L. S. Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr. Opin. Cell Biol. 46, 72–80 (2017).
pubmed: 28363125 pmcid: 5505790 doi: 10.1016/j.ceb.2017.03.002
Yamaguchi, Y., Shibata, H. & Handa, H. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. Biochim. Biophys Acta 1829, 98–104 (2013).
pubmed: 23202475 doi: 10.1016/j.bbagrm.2012.11.007
Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).
pubmed: 7759473 doi: 10.1074/jbc.270.21.12335
Vos, S. M. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018).
pubmed: 30135578 doi: 10.1038/s41586-018-0440-4
Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell 52, 517–528 (2013).
pubmed: 24184211 doi: 10.1016/j.molcel.2013.10.001
Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67, 411–422.e414 (2017).
pubmed: 28735898 pmcid: 5548954 doi: 10.1016/j.molcel.2017.06.027
Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).
pubmed: 22986266 pmcid: 3552498 doi: 10.1038/nrg3293
Erickson, B., Sheridan, R. M., Cortazar, M. & Bentley, D. L. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev. 32, 1215–1225 (2018).
pubmed: 30150253 pmcid: 6120720 doi: 10.1101/gad.316810.118
Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).
pubmed: 20007866 doi: 10.1126/science.1181421
Tatomer, D. C. et al. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33, 1525–1538 (2019).
pubmed: 31530651 pmcid: 6824465 doi: 10.1101/gad.330167.119
Elrod, N. D. et al. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell 76, 738–752.e737 (2019).
pubmed: 31809743 doi: 10.1016/j.molcel.2019.10.034
Baillat, D. & Wagner, E. J. Integrator: surprisingly diverse functions in gene expression. Trends Biochem. Sci. 40, 257–264 (2015).
pubmed: 25882383 pmcid: 4408249 doi: 10.1016/j.tibs.2015.03.005
Morton, T. et al. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26, 2746–2760 (2014).
pubmed: 25035402 pmcid: 4145111 doi: 10.1105/tpc.114.125617
Kindgren, P., Ivanov, M. & Marquardt, S. Native elongation transcript sequencing reveals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids Res. 48, 2332–2347 (2019).
Nielsen, M. et al. Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet. 15, e1007969 (2019).
pubmed: 30707695 pmcid: 6373976 doi: 10.1371/journal.pgen.1007969
Herr, A. J., Molnar, A., Jones, A. & Baulcombe, D. C. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc. Natl Acad. Sci. USA 103, 14994–15001 (2006).
pubmed: 17008405 doi: 10.1073/pnas.0606536103
Manzano, D. et al. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing. Proc. Natl Acad. Sci. USA 106, 8772–8777 (2009).
pubmed: 19439664 doi: 10.1073/pnas.0903444106
Liu, Y. et al. snRNA 3′ end processing by a CPSF73-containing complex essential for development in Arabidopsis. PLoS Biol. 14, e1002571 (2016).
pubmed: 27780203 pmcid: 5079582 doi: 10.1371/journal.pbio.1002571
Chekanova, J. A. et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353 (2007).
pubmed: 18160042 doi: 10.1016/j.cell.2007.10.056
Lange, H. et al. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet. 10, e1004564 (2014).
pubmed: 25144737 pmcid: 4140647 doi: 10.1371/journal.pgen.1004564
Lorkovic, Z. J. & Barta, A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623–635 (2002).
pubmed: 11809873 pmcid: 100298 doi: 10.1093/nar/30.3.623
Liu, F., Marquardt, S., Lister, C., Swiezewski, S. & Dean, C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327, 94–97 (2010).
pubmed: 19965720 doi: 10.1126/science.1180278
Zhu, J., Liu, M., Liu, X. & Dong, Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat. Plants 4, 1112–1123 (2018).
pubmed: 30374093 doi: 10.1038/s41477-018-0280-0
Pelechano, V., Wei, W., Jakob, P. & Steinmetz, L. M. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat. Protoc. 9, 1740–1759 (2014).
pubmed: 24967623 pmcid: 4111111 doi: 10.1038/nprot.2014.121
Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).
pubmed: 23615609 pmcid: 3705217 doi: 10.1038/nature12121
Sherstnev, A. et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat. Struct. Mol. Biol. 19, 845–852 (2012).
pubmed: 22820990 pmcid: 3533403 doi: 10.1038/nsmb.2345
Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, REVIEWS0004 (2002).
pubmed: 11897027 pmcid: 139023 doi: 10.1186/gb-2002-3-3-reviews0004
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).
pubmed: 23430654 pmcid: 3974810 doi: 10.1126/science.1229386
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158 pmcid: 2703892 doi: 10.1093/nar/gkp335
Nguyen, N. T. T. et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res. 46, W209–W214 (2018).
pubmed: 29722874 pmcid: 6030903 doi: 10.1093/nar/gky317
Franco-Zorrilla, J. M. et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl Acad. Sci. USA 111, 2367–2372 (2014).
pubmed: 24477691 doi: 10.1073/pnas.1316278111
Cubas, P., Lauter, N., Doebley, J. & Coen, E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999).
pubmed: 10363373 doi: 10.1046/j.1365-313X.1999.00444.x
Wang, Z. W., Wu, Z., Raitskin, O., Sun, Q. & Dean, C. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc. Natl Acad. Sci. USA 111, 7468–7473 (2014).
pubmed: 24799695 doi: 10.1073/pnas.1406635111
Oh, S., Zhang, H., Ludwig, P. & van Nocker, S. A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16, 2940–2953 (2004).
pubmed: 15472079 pmcid: 527190 doi: 10.1105/tpc.104.026062
Zeng, W. et al. Modulation of auxin signaling and development by polyadenylation machinery. Plant Physiol. 179, 686–699 (2019).
pubmed: 30487141 doi: 10.1104/pp.18.00782
Lin, J., Xu, R., Wu, X., Shen, Y. & Li, Q. Q. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. Plant J. 91, 829–839 (2017).
pubmed: 28621907 doi: 10.1111/tpj.13611
Wang, Y. et al. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc. Natl Acad. Sci. USA 116, 12094–12102 (2019).
pubmed: 31142655
Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).
pubmed: 31931956 pmcid: 6959997 doi: 10.7554/eLife.49658
Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).
doi: 10.1038/s41586-019-1693-2
Mayr, C. Regulation by 3′-untranslated regions. Annu Rev. Genet. 51, 171–194 (2017).
pubmed: 28853924 doi: 10.1146/annurev-genet-120116-024704
Erb, T. J., Jones, P. R. & Bar-Even, A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37, 56–62 (2017).
pubmed: 28152442 doi: 10.1016/j.cbpa.2016.12.023
Raxwal, V. K. & Riha, K. Nonsense mediated RNA decay and evolutionary capacitance. Biochim. Biophys. Acta 1859, 1538–1543 (2016).
pubmed: 27599370 doi: 10.1016/j.bbagrm.2016.09.001
Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).
pubmed: 12934008 doi: 10.1126/science.1087374
Carvalho, S. et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 41, 2881–2893 (2013).
pubmed: 23325844 pmcid: 3597667 doi: 10.1093/nar/gks1472
Lolas, I. B. et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J. 61, 686–697 (2010).
pubmed: 19947984 doi: 10.1111/j.1365-313X.2009.04096.x
Ikeda, Y. et al. HMG domain containing SSRP1 is required for dna demethylation and genomic imprinting in Arabidopsis. Dev. Cell 21, 589–596 (2011).
pubmed: 21920319 doi: 10.1016/j.devcel.2011.08.013
Shao, W. & Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 49, 1045–1051 (2017).
pubmed: 28504701 doi: 10.1038/ng.3867
Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648–663 e647 (2018).
pubmed: 29398447 pmcid: 6175280 doi: 10.1016/j.molcel.2018.01.006
Price, D. H. Transient pausing by RNA polymerase II. Proc. Natl Acad. Sci. USA 115, 4810–4812 (2018).
pubmed: 29691322 doi: 10.1073/pnas.1805129115
Wang, J. et al. Improved transcriptome annotation and read-through transcript identification with TIF-Seq2. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/859488v1 (2019).
Pelechano, V., Wei, W. & Steinmetz, L. M. Genome-wide quantification of 5’-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nat. Protoc. 11, 359–376 (2016).
pubmed: 26820793 pmcid: 4732566 doi: 10.1038/nprot.2016.026
Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).
pubmed: 17697981 doi: 10.1263/jbb.104.34
Schurch, N. J. et al. Improved annotation of 3′ untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs. PLoS ONE 9, e94270 (2014).
pubmed: 24722185 pmcid: 3983147 doi: 10.1371/journal.pone.0094270

Auteurs

Quentin Angelo Thomas (QA)

Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.

Ryan Ard (R)

Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.

Jinghan Liu (J)

Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.

Bingnan Li (B)

SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.

Jingwen Wang (J)

SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.

Vicent Pelechano (V)

SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.

Sebastian Marquardt (S)

Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark. sebastian.marquardt@plen.ku.dk.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH