Transcript isoform sequencing reveals widespread promoter-proximal transcriptional termination in Arabidopsis.
Arabidopsis
/ genetics
Arabidopsis Proteins
/ genetics
Chromatin
/ genetics
Cleavage Stimulation Factor
/ genetics
Gene Expression Regulation, Plant
Mutation
Plants, Genetically Modified
Polyadenylation
Promoter Regions, Genetic
Protein Isoforms
/ genetics
RNA, Plant
Nicotiana
/ genetics
Transcription Initiation Site
Transcription Termination, Genetic
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 05 2020
22 05 2020
Historique:
received:
24
06
2019
accepted:
29
04
2020
entrez:
24
5
2020
pubmed:
24
5
2020
medline:
25
8
2020
Statut:
epublish
Résumé
RNA polymerase II (RNAPII) transcription converts the DNA sequence of a single gene into multiple transcript isoforms that may carry alternative functions. Gene isoforms result from variable transcription start sites (TSSs) at the beginning and polyadenylation sites (PASs) at the end of transcripts. How alternative TSSs relate to variable PASs is poorly understood. Here, we identify both ends of RNA molecules in Arabidopsis thaliana by transcription isoform sequencing (TIF-seq) and report four transcript isoforms per expressed gene. While intragenic initiation represents a large source of regulated isoform diversity, we observe that ~14% of expressed genes generate relatively unstable short promoter-proximal RNAs (sppRNAs) from nascent transcript cleavage and polyadenylation shortly after initiation. The location of sppRNAs correlates with the position of promoter-proximal RNAPII stalling, indicating that large pools of promoter-stalled RNAPII may engage in transcriptional termination. We propose that promoter-proximal RNAPII stalling-linked to premature transcriptional termination may represent a checkpoint that governs plant gene expression.
Identifiants
pubmed: 32444691
doi: 10.1038/s41467-020-16390-7
pii: 10.1038/s41467-020-16390-7
pmc: PMC7244574
doi:
Substances chimiques
Arabidopsis Proteins
0
Chromatin
0
Cleavage Stimulation Factor
0
CstF77 protein, Arabidopsis
0
Protein Isoforms
0
RNA, Plant
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2589Références
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130
pmcid: 4782187
doi: 10.1038/nrm3953
Portin, P. & Wilkins, A. The evolving definition of the term “Gene”. Genetics 205, 1353–1364 (2017).
pubmed: 28360126
pmcid: 5378099
doi: 10.1534/genetics.116.196956
Pumplin, N. et al. DNA methylation influences the expression of DICER-LIKE4 isoforms, which encode proteins of alternative localization and function. Plant Cell 28, 2786–2804 (2016).
pubmed: 27956586
pmcid: 5155348
doi: 10.1105/tpc.16.00554
Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1, 40–51 (2012).
pubmed: 23801666
doi: 10.1002/wdev.21
Trcek, T., Larson, D. R., Moldón, A., Query, C. C. & Singer, R. H. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).
pubmed: 22196726
pmcid: 3286490
doi: 10.1016/j.cell.2011.11.051
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424
doi: 10.1038/nrm.2017.103
Jensen, T. H., Jacquier, A. & Libri, D. Dealing with pervasive transcription. Mol. Cell 52, 473–484 (2013).
pubmed: 24267449
doi: 10.1016/j.molcel.2013.10.032
Kindgren, P., Ard, R., Ivanov, M. & Marquardt, S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat. Commun. 9, 4561 (2018).
pubmed: 30385760
pmcid: 6212407
doi: 10.1038/s41467-018-07010-6
Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature 526, 453–457 (2015).
pubmed: 26444240
pmcid: 4807020
doi: 10.1038/nature15258
Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).
pubmed: 25650798
doi: 10.1038/nrm3941
Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).
pubmed: 27284201
pmcid: 5144996
doi: 10.1126/science.aad9926
Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35, 553–564 (2019).
pubmed: 31213387
doi: 10.1016/j.tig.2019.05.005
Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet. 19, 518–529 (2018).
pubmed: 29748575
doi: 10.1038/s41576-018-0013-2
Marquardt, S. et al. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157, 1712–1723 (2014).
pubmed: 24949978
pmcid: 4090027
doi: 10.1016/j.cell.2014.04.036
Ibrahim, M. M. et al. Determinants of promoter and enhancer transcription directionality in metazoans. Nat. Commun. 9, 4472 (2018).
pubmed: 30367057
pmcid: 6203779
doi: 10.1038/s41467-018-06962-z
Wu, A. C. K. & Van Werven, F. J. Transcribe this way: Rap1 confers promoter directionality by repressing divergent transcription. Transcription 10, 164–170 (2019).
pubmed: 31057041
pmcid: 6602560
doi: 10.1080/21541264.2019.1608716
Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).
pubmed: 23792564
pmcid: 3720719
doi: 10.1038/nature12349
Oh, J.-M. et al. U1 snRNP telescripting regulates a size–function-stratified human genome. Nat. Struct. Mol. Biol. 24, 993–999 (2017).
pubmed: 28967884
pmcid: 5685549
doi: 10.1038/nsmb.3473
Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).
pubmed: 31626751
doi: 10.1016/j.molcel.2019.09.017
Shi, Y. & Manley, J. L. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev. 29, 889–897 (2015).
pubmed: 25934501
pmcid: 4421977
doi: 10.1101/gad.261974.115
Mayer, A., Landry, H. M. & Churchman, L. S. Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr. Opin. Cell Biol. 46, 72–80 (2017).
pubmed: 28363125
pmcid: 5505790
doi: 10.1016/j.ceb.2017.03.002
Yamaguchi, Y., Shibata, H. & Handa, H. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. Biochim. Biophys Acta 1829, 98–104 (2013).
pubmed: 23202475
doi: 10.1016/j.bbagrm.2012.11.007
Marshall, N. F. & Price, D. H. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270, 12335–12338 (1995).
pubmed: 7759473
doi: 10.1074/jbc.270.21.12335
Vos, S. M. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018).
pubmed: 30135578
doi: 10.1038/s41586-018-0440-4
Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell 52, 517–528 (2013).
pubmed: 24184211
doi: 10.1016/j.molcel.2013.10.001
Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67, 411–422.e414 (2017).
pubmed: 28735898
pmcid: 5548954
doi: 10.1016/j.molcel.2017.06.027
Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).
pubmed: 22986266
pmcid: 3552498
doi: 10.1038/nrg3293
Erickson, B., Sheridan, R. M., Cortazar, M. & Bentley, D. L. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev. 32, 1215–1225 (2018).
pubmed: 30150253
pmcid: 6120720
doi: 10.1101/gad.316810.118
Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).
pubmed: 20007866
doi: 10.1126/science.1181421
Tatomer, D. C. et al. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 33, 1525–1538 (2019).
pubmed: 31530651
pmcid: 6824465
doi: 10.1101/gad.330167.119
Elrod, N. D. et al. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell 76, 738–752.e737 (2019).
pubmed: 31809743
doi: 10.1016/j.molcel.2019.10.034
Baillat, D. & Wagner, E. J. Integrator: surprisingly diverse functions in gene expression. Trends Biochem. Sci. 40, 257–264 (2015).
pubmed: 25882383
pmcid: 4408249
doi: 10.1016/j.tibs.2015.03.005
Morton, T. et al. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures. Plant Cell 26, 2746–2760 (2014).
pubmed: 25035402
pmcid: 4145111
doi: 10.1105/tpc.114.125617
Kindgren, P., Ivanov, M. & Marquardt, S. Native elongation transcript sequencing reveals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids Res. 48, 2332–2347 (2019).
Nielsen, M. et al. Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet. 15, e1007969 (2019).
pubmed: 30707695
pmcid: 6373976
doi: 10.1371/journal.pgen.1007969
Herr, A. J., Molnar, A., Jones, A. & Baulcombe, D. C. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc. Natl Acad. Sci. USA 103, 14994–15001 (2006).
pubmed: 17008405
doi: 10.1073/pnas.0606536103
Manzano, D. et al. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing. Proc. Natl Acad. Sci. USA 106, 8772–8777 (2009).
pubmed: 19439664
doi: 10.1073/pnas.0903444106
Liu, Y. et al. snRNA 3′ end processing by a CPSF73-containing complex essential for development in Arabidopsis. PLoS Biol. 14, e1002571 (2016).
pubmed: 27780203
pmcid: 5079582
doi: 10.1371/journal.pbio.1002571
Chekanova, J. A. et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353 (2007).
pubmed: 18160042
doi: 10.1016/j.cell.2007.10.056
Lange, H. et al. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet. 10, e1004564 (2014).
pubmed: 25144737
pmcid: 4140647
doi: 10.1371/journal.pgen.1004564
Lorkovic, Z. J. & Barta, A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623–635 (2002).
pubmed: 11809873
pmcid: 100298
doi: 10.1093/nar/30.3.623
Liu, F., Marquardt, S., Lister, C., Swiezewski, S. & Dean, C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327, 94–97 (2010).
pubmed: 19965720
doi: 10.1126/science.1180278
Zhu, J., Liu, M., Liu, X. & Dong, Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat. Plants 4, 1112–1123 (2018).
pubmed: 30374093
doi: 10.1038/s41477-018-0280-0
Pelechano, V., Wei, W., Jakob, P. & Steinmetz, L. M. Genome-wide identification of transcript start and end sites by transcript isoform sequencing. Nat. Protoc. 9, 1740–1759 (2014).
pubmed: 24967623
pmcid: 4111111
doi: 10.1038/nprot.2014.121
Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).
pubmed: 23615609
pmcid: 3705217
doi: 10.1038/nature12121
Sherstnev, A. et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat. Struct. Mol. Biol. 19, 845–852 (2012).
pubmed: 22820990
pmcid: 3533403
doi: 10.1038/nsmb.2345
Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, REVIEWS0004 (2002).
pubmed: 11897027
pmcid: 139023
doi: 10.1186/gb-2002-3-3-reviews0004
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).
pubmed: 23430654
pmcid: 3974810
doi: 10.1126/science.1229386
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158
pmcid: 2703892
doi: 10.1093/nar/gkp335
Nguyen, N. T. T. et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res. 46, W209–W214 (2018).
pubmed: 29722874
pmcid: 6030903
doi: 10.1093/nar/gky317
Franco-Zorrilla, J. M. et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl Acad. Sci. USA 111, 2367–2372 (2014).
pubmed: 24477691
doi: 10.1073/pnas.1316278111
Cubas, P., Lauter, N., Doebley, J. & Coen, E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999).
pubmed: 10363373
doi: 10.1046/j.1365-313X.1999.00444.x
Wang, Z. W., Wu, Z., Raitskin, O., Sun, Q. & Dean, C. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc. Natl Acad. Sci. USA 111, 7468–7473 (2014).
pubmed: 24799695
doi: 10.1073/pnas.1406635111
Oh, S., Zhang, H., Ludwig, P. & van Nocker, S. A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell 16, 2940–2953 (2004).
pubmed: 15472079
pmcid: 527190
doi: 10.1105/tpc.104.026062
Zeng, W. et al. Modulation of auxin signaling and development by polyadenylation machinery. Plant Physiol. 179, 686–699 (2019).
pubmed: 30487141
doi: 10.1104/pp.18.00782
Lin, J., Xu, R., Wu, X., Shen, Y. & Li, Q. Q. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. Plant J. 91, 829–839 (2017).
pubmed: 28621907
doi: 10.1111/tpj.13611
Wang, Y. et al. NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc. Natl Acad. Sci. USA 116, 12094–12102 (2019).
pubmed: 31142655
Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).
pubmed: 31931956
pmcid: 6959997
doi: 10.7554/eLife.49658
Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).
doi: 10.1038/s41586-019-1693-2
Mayr, C. Regulation by 3′-untranslated regions. Annu Rev. Genet. 51, 171–194 (2017).
pubmed: 28853924
doi: 10.1146/annurev-genet-120116-024704
Erb, T. J., Jones, P. R. & Bar-Even, A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37, 56–62 (2017).
pubmed: 28152442
doi: 10.1016/j.cbpa.2016.12.023
Raxwal, V. K. & Riha, K. Nonsense mediated RNA decay and evolutionary capacitance. Biochim. Biophys. Acta 1859, 1538–1543 (2016).
pubmed: 27599370
doi: 10.1016/j.bbagrm.2016.09.001
Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).
pubmed: 12934008
doi: 10.1126/science.1087374
Carvalho, S. et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res. 41, 2881–2893 (2013).
pubmed: 23325844
pmcid: 3597667
doi: 10.1093/nar/gks1472
Lolas, I. B. et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J. 61, 686–697 (2010).
pubmed: 19947984
doi: 10.1111/j.1365-313X.2009.04096.x
Ikeda, Y. et al. HMG domain containing SSRP1 is required for dna demethylation and genomic imprinting in Arabidopsis. Dev. Cell 21, 589–596 (2011).
pubmed: 21920319
doi: 10.1016/j.devcel.2011.08.013
Shao, W. & Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 49, 1045–1051 (2017).
pubmed: 28504701
doi: 10.1038/ng.3867
Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648–663 e647 (2018).
pubmed: 29398447
pmcid: 6175280
doi: 10.1016/j.molcel.2018.01.006
Price, D. H. Transient pausing by RNA polymerase II. Proc. Natl Acad. Sci. USA 115, 4810–4812 (2018).
pubmed: 29691322
doi: 10.1073/pnas.1805129115
Wang, J. et al. Improved transcriptome annotation and read-through transcript identification with TIF-Seq2. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/859488v1 (2019).
Pelechano, V., Wei, W. & Steinmetz, L. M. Genome-wide quantification of 5’-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nat. Protoc. 11, 359–376 (2016).
pubmed: 26820793
pmcid: 4732566
doi: 10.1038/nprot.2016.026
Nakagawa, T. et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104, 34–41 (2007).
pubmed: 17697981
doi: 10.1263/jbb.104.34
Schurch, N. J. et al. Improved annotation of 3′ untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs. PLoS ONE 9, e94270 (2014).
pubmed: 24722185
pmcid: 3983147
doi: 10.1371/journal.pone.0094270