Left ventricular global longitudinal strain in bicupsid aortic valve patients: head-to-head comparison between computed tomography, 4D flow cardiovascular magnetic resonance and speckle-tracking echocardiography.
Adolescent
Adult
Aortic Valve
/ abnormalities
Bicuspid Aortic Valve Disease
Echocardiography
Feasibility Studies
Female
Heart Valve Diseases
/ diagnostic imaging
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Multimodal Imaging
Myocardial Contraction
Observer Variation
Predictive Value of Tests
Prospective Studies
Radiographic Image Interpretation, Computer-Assisted
Reproducibility of Results
Stroke Volume
Tomography, X-Ray Computed
Ventricular Function, Left
Young Adult
4D flow
Bicuspid aortic valve
Cardiac magnetic resonance imaging
Computed tomography
Echocardiography
Global longitudinal strain
Journal
The international journal of cardiovascular imaging
ISSN: 1875-8312
Titre abrégé: Int J Cardiovasc Imaging
Pays: United States
ID NLM: 100969716
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
26
01
2020
accepted:
14
05
2020
pubmed:
27
5
2020
medline:
6
10
2020
entrez:
27
5
2020
Statut:
ppublish
Résumé
Left ventricular global longitudinal strain (LVGLS) analysis is a sensitive measurement of myocardial deformation most often done using speckle-tracking transthoracic echocardiography (TTE). We propose a novel approach to measure LVGLS using feature-tracking software on the magnitude dataset of 4D flow cardiovascular magnetic resonance (CMR) and compare it to dynamic computed tomography (CT) and speckle tracking TTE derived measurements. In this prospective cohort study 59 consecutive adult patients with a bicuspid aortic valve (BAV) were included. The study protocol consisted of TTE, CT, and CMR on the same day. Image analysis was done using dedicated feature-tracking (4D flow CMR and CT) and speckle-tracking (TTE) software, on apical 2-, 3-, and 4-chamber long-axis multiplanar reconstructions (4D flow CMR and CT) or standard apical 2-, 3-, and 4-chamber acquisitions (TTE). CMR and CT GLS analysis was feasible in all patients. Good correlations were observed for GLS measured by CMR (- 21 ± 3%) and CT (- 20 ± 3%) versus TTE (- 20 ± 3%, Pearson's r: 0.67 and 0.65, p < 0.001). CMR also correlated well with CT (Pearson's r 0.62, p < 0.001). The inter-observer analysis showed moderate to good reproducibility of GLS measurement by CMR, CT and TTE (Pearsons's r: 0.51, 0.77, 0.70 respectively; p < 0.05). Additionally, ejection fraction (EF), end-diastolic and end-systolic volume measurements (EDV and ESV) correlated well between all modalities (Pearson's r > 0.61, p < 0.001). Feature-tracking GLS analysis is feasible using the magnitude images acquired with 4D flow CMR. GLS measurement by CMR correlates well with CT and speckle-tracking 2D TTE. GLS analysis on 4D flow CMR allows for an integrative approach, integrating flow and functional data in a single sequence. Not applicable, observational study.
Identifiants
pubmed: 32451876
doi: 10.1007/s10554-020-01883-9
pii: 10.1007/s10554-020-01883-9
pmc: PMC7438282
doi:
Types de publication
Comparative Study
Journal Article
Observational Study
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
1771-1780Subventions
Organisme : Hartstichting (NL)
ID : 2013T093
Références
MAGMA. 2019 Apr;32(2):269-279
pubmed: 30171383
Eur J Echocardiogr. 2009 Mar;10(2):229-37
pubmed: 18650220
Echocardiography. 2010 Feb;27(2):146-54
pubmed: 19765075
Int J Cardiovasc Imaging. 2019 Sep;35(9):1701-1707
pubmed: 30953252
J Am Soc Echocardiogr. 2015 May;28(5):587-96
pubmed: 25577185
Cardiovasc Diagn Ther. 2014 Apr;4(2):173-92
pubmed: 24834414
Curr Cardiol Rep. 2017 Jan;19(1):9
pubmed: 28176279
J Magn Reson Imaging. 2016 Aug;44(2):383-92
pubmed: 26871420
Tomography. 2018 Mar;4(1):26-32
pubmed: 30042984
Echocardiography. 2013 Feb;30(2):203-10
pubmed: 23167248
Heart. 2013 Aug;99(15):1078-86
pubmed: 23376947
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
Am J Cardiol. 2008 May 15;101(10):1504-9
pubmed: 18471466
J Cardiovasc Comput Tomogr. 2019 Mar - Apr;13(2):157-162
pubmed: 30396864
Int J Nephrol. 2012;2012:963504
pubmed: 22649726
Sci Rep. 2019 Mar 1;9(1):3239
pubmed: 30824793
J Cardiovasc Comput Tomogr. 2018 May - Jun;12(3):240-244
pubmed: 29496427
Echocardiography. 2012 Sep;29(8):934-42
pubmed: 22591191
J Am Coll Cardiol. 2017 Aug 22;70(8):942-954
pubmed: 28818204
Eur J Radiol. 2017 Oct;95:141-146
pubmed: 28987660
J Am Coll Cardiol. 2012 May 22;59(21):1897-907
pubmed: 22595410
Int J Cardiol. 2019 Feb 1;276:230-235
pubmed: 30213599
J Magn Reson Imaging. 2015 Dec;42(6):1765-76
pubmed: 25914149
Int J Cardiovasc Imaging. 2017 Dec;33(12):1895-1903
pubmed: 28631106
Echocardiography. 2016 Nov;33(11):1665-1675
pubmed: 27550630
Echocardiography. 2014 May;31(5):615-22
pubmed: 24219240
Echocardiography. 2010 Mar;27(3):253-9
pubmed: 20070362
Eur Heart J Cardiovasc Imaging. 2018 Aug 1;19(8):905-915
pubmed: 28977386
Eur J Radiol. 2014 Mar;83(3):e123-30
pubmed: 24368011
Am J Cardiol. 2009 Nov 15;104(10):1398-401
pubmed: 19892057
Eur Heart J Cardiovasc Imaging. 2016 Dec;17(12):1321-1360
pubmed: 27422899
Eur Heart J Cardiovasc Imaging. 2015 May;16(5):539-48
pubmed: 25428945
J AOAC Int. 2019 May 1;102(3):903-914
pubmed: 30477604