Estrogenic activity of food contact materials-evaluation of 20 chemicals using a yeast estrogen screen on HPTLC or 96-well plates.
Analysis of unknowns
Bioanalytics
Dose-response modeling
Endocrine-disrupting chemicals
Food packaging
Thin-layer chromatography
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
11
02
2020
accepted:
11
05
2020
revised:
08
04
2020
pubmed:
28
5
2020
medline:
9
2
2021
entrez:
28
5
2020
Statut:
ppublish
Résumé
Food contact materials (FCM) may contain complex mixtures of estrogenic chemicals. A yeast estrogen screen performed on high performance thin-layer chromatography plates (planar-YES, P-YES) is promising for analysis of such mixtures, as it could allow for better elucidation of effects compared with established methods in microtiter plates. However, the P-YES has not been directly compared with established methods. We compared the performance of a microtiter plate YES (lyticase-YES, L-YES) to P-YES on silica gel HPTLC plates using 17β-estradiol (E2), 20 chemicals representative of migrants from plastic FCM, and three migrates of coated metal food cans. Effective doses (ED
Identifiants
pubmed: 32458016
doi: 10.1007/s00216-020-02701-w
pii: 10.1007/s00216-020-02701-w
pmc: PMC7329773
doi:
Substances chimiques
Benzhydryl Compounds
0
Endocrine Disruptors
0
Estrogens
0
Phenols
0
Water Pollutants, Chemical
0
bisphenol A
MLT3645I99
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4527-4536Subventions
Organisme : Bundesamt für Lebensmittelsicherheit und Veterinärwesen
ID : 4.17.05
Références
European Commission. Commission Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union. 2011.
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651(Pt 2):3253–68.
doi: 10.1016/j.scitotenv.2018.10.015
pubmed: 30463173
Kirchnawy C, Mertl J, Osorio V, Hausensteiner H, Washüttl M, Bergmair J, et al. Detection and identification of oestrogen-active substances in plastic food packaging migrates. Packag Technol Sci. 2014;27(6):467–78.
doi: 10.1002/pts.2047
European Commission. Commission Regulation (EU) 2017/644 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 589/2014 Official Journal of the European Union. 2017.
Groh KJ, Muncke J. In vitro toxicity testing of food contact materials: state-of-the-art and future challenges. Compr Rev Food Sci Food Saf. 2017;16(5):1123–50.
doi: 10.1111/1541-4337.12280
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, et al. Effect-directed analysis supporting monitoring of aquatic environments--an in-depth overview. Sci Total Environ. 2016;544:1073–118.
doi: 10.1016/j.scitotenv.2015.11.102
pubmed: 26779957
Rosenmai AK, Bengtstrom L, Taxvig C, Trier X, Petersen JH, Svingen T, et al. An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board. Food Chem Toxicol. 2017;106(Pt A):250–9.
doi: 10.1016/j.fct.2017.05.061
pubmed: 28571769
Kunz PY, Simon E, Creusot N, Jayasinghe BS, Kienle C, Maletz S, et al. Effect-based tools for monitoring estrogenic mixtures: evaluation of five in vitro bioassays. Water Res. 2017;110:378–88.
doi: 10.1016/j.watres.2016.10.062
pubmed: 27836174
Routledge EJ, Sumpter JP. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem. 1997;272(6):3280–8.
doi: 10.1074/jbc.272.6.3280
pubmed: 9013566
ISO. 19040-1. Water quality -- determination of the estrogenic potential of water and waste water -- part 1: Yeast estrogen screen (Saccharomyces cerevisiae). Geneva, Switzerland. 2018.
Escher BI, Neale PA, Villeneuve DL. The advantages of linear concentration-response curves for in vitro bioassays with environmental samples. Environ Toxicol Chem. 2018;37(9):2273–80.
Buchinger S, Spira D, Broder K, Schlusener M, Ternes T, Reifferscheid G. Direct coupling of thin-layer chromatography with a bioassay for the detection of estrogenic compounds: applications for effect-directed analysis. Anal Chem. 2013;85(15):7248–56.
doi: 10.1021/ac4010925
pubmed: 23799293
Müller MB, Dausend C, Weins C, Frimmel FH. A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia. 2004;60(3–4):207–11.
Spira D, Reifferscheid G, Buchinger S. Combination of high-performance thin-layer chromatography with a specific bioassay - a tool for effect-directed analysis. J Planar Chromatogr – Modern TLC. 2013;26(5):395–401.
doi: 10.1556/JPC.26.2013.5.2
Schönborn A, Grimmer A. Coupling sample preparation with effect-directed analysis of estrogenic activity - proposal for a new rapid screening concept for water samples. J Planar Chromatogr – Modern TLC. 2013;26(5):402–8.
doi: 10.1556/JPC.26.2013.5.3
Brack W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bianal Chem. 2003;377(3):397–407.
doi: 10.1007/s00216-003-2139-z
Schoenborn A, Schmid P, Bram S, Reifferscheid G, Ohlig M, Buchinger S. Unprecedented sensitivity of the planar yeast estrogen screen by using a spray-on technology. J Chromatogr A. 2017;1530:185–91.
doi: 10.1016/j.chroma.2017.11.009
pubmed: 29146425
Klingelhofer I, Morlock GE. Sharp-bounded zones link to the effect in planar chromatography-bioassay-mass spectrometry. J Chromatogr A. 2014;1360:288–95.
doi: 10.1016/j.chroma.2014.07.083
pubmed: 25145566
Moricz AM, Ott PG, Habe TT, Darcsi A, Boszormenyi A, Alberti A, et al. Effect-directed discovery of bioactive compounds followed by highly targeted characterization, isolation and identification, exemplarily shown for Solidago virgaurea. Anal Chem. 2016;88(16):8202–9.
doi: 10.1021/acs.analchem.6b02007
pubmed: 27433973
Schick D, Schwack W. Logit-log evaluation of planar yeast estrogen screens. J Chromatogr A. 2017;1509:147–52.
doi: 10.1016/j.chroma.2017.06.035
pubmed: 28629936
Schick D, Schwack W. Planar yeast estrogen screen with resorufin-beta-d-galactopyranoside as substrate. J Chromatogr A. 2017;1497:155–63.
doi: 10.1016/j.chroma.2017.03.047
pubmed: 28359553
Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, et al. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC Trends Anal Chem. 2018;102:225–35.
doi: 10.1016/j.trac.2018.02.008
Beresford N, Routledge EJ, Harris CA, Sumpter JP. Issues arising when interpreting results from an in vitro assay for estrogenic activity. Toxicol Appl Pharmacol. 2000;162(1):22–33.
doi: 10.1006/taap.1999.8817
pubmed: 10631124
Muncke J. Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ. 2009;407(16):4549–59.
doi: 10.1016/j.scitotenv.2009.05.006
pubmed: 19482336
Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, et al. Scientific challenges in the risk assessment of food contact materials. Environ Health Perspect. 2017;125(9):095001.
doi: 10.1289/EHP644
pubmed: 28893723
pmcid: 5915200
Ogawa Y, Kawamura Y, Wakui C, Mutsuga M, Nishimura T, Tanamoto K. Estrogenic activities of chemicals related to food contact plastics and rubbers tested by the yeast two-hybrid assay. Food Addit Contam. 2006;23(4):422–30.
doi: 10.1080/02652030500482371
pubmed: 16546889
McDonnell DP, Nawaz Z, Densmore C, Weigel NL, Pham TA, Clark JH, et al. High level expression of biologically active estrogen receptor in Saccharomyces cerevisiae. J Steroid Biochem Mol Biol. 1991;39(3):291–7.
doi: 10.1016/0960-0760(91)90038-7
pubmed: 1911419
Routledge EJ, Sumpter JP. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem. 1996;15(3):241–8.
doi: 10.1002/etc.5620150303
Cimpoiu C, Hosu A, Hodisan S. Analysis of some steroids by thin-layer chromatography using optimum mobile phases. J Pharm Biomed Anal. 2006;41(2):633–7.
doi: 10.1016/j.jpba.2005.12.004
pubmed: 16427238
Briciu-Burghina C, Heery B, Regan F. Continuous fluorometric method for measuring beta-glucuronidase activity: comparative analysis of three fluorogenic substrates. Analyst. 2015;140(17):5953–64.
doi: 10.1039/C5AN01021G
pubmed: 26225370
Baumgartner V, Schoenborn A, Grimmer A, Mainetti T, Pfändler I, Gude T. planar-YES: analysing food contact materials with an estrogen screen assay. International Life Sciences Institute, Barcelona. Poster Presentation. 2016.
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS One. 2015;10(12):e0146021.
doi: 10.1371/journal.pone.0146021
pubmed: 26717316
pmcid: 4696819
Wagner M, Schlusener MP, Ternes TA, Oehlmann J. Identification of putative steroid receptor antagonists in bottled water: combining bioassays and high-resolution mass spectrometry. PLoS One. 2013;8(8):e72472.
doi: 10.1371/journal.pone.0072472
pubmed: 24015248
pmcid: 3756062
Mertl J, Kirchnawy C, Osorio V, Grininger A, Richter A, Bergmair J, et al. Characterization of estrogen and androgen activity of food contact materials by different in vitro bioassays (YES, YAS, ERa and AR CALUX) and chromatographic analysis (GC-MS, HPLC-MS). PLoS One. 2014;9(7).
Harris CA, Henttu P, Parker MG, Sumpter JP. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect. 1997;105(8):802–11.
doi: 10.1289/ehp.97105802
pubmed: 9347895
pmcid: 1470189
Yu H, Caldwell DJ, Suri RP. In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations. Chemosphere. 2019;215:396–403.
doi: 10.1016/j.chemosphere.2018.10.067
pubmed: 30336316
Simon C, Onghena M, Covaci A, Van Hoeck E, Van Loco J, Vandermarken T, et al. Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicol in Vitro. 2016;37:121–33.
doi: 10.1016/j.tiv.2016.09.008
pubmed: 27633901
Fischer FC, Cirpka OA, Goss KU, Henneberger L, Escher BI. Application of experimental polystyrene partition constants and diffusion coefficients to predict the sorption of neutral organic chemicals to multiwell plates in in vivo and in vitro bioassays. Environ Sci Technol. 2018;52(22):13511–22.
Morlock GE, Klingelhofer I. Liquid chromatography-bioassay-mass spectrometry for profiling of physiologically active food. Anal Chem. 2014;86(16):8289–95.
doi: 10.1021/ac501723j
pubmed: 25069056
Riegraf C, Reifferscheid G, Becker B, Belkin S, Hollert H, Feiler U, et al. Detection and quantification of photosystem II inhibitors using the freshwater alga Desmodesmus subspicatus in combination with high-performance thin-layer chromatography. Environ Sci Technol. 2019;53(22):13458–67.
Habe TT, Jamshidi-Aidji M, Macho J, Morlock GE. Direct bioautography hyphenated to direct analysis in real time mass spectrometry: chromatographic separation, bioassay and mass spectra, all in the same sample run. J Chromatogr. 2018;1568:188–96.
doi: 10.1016/j.chroma.2018.07.002
Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, et al. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Sci Total Environ. 2018;628–629:748–65.
doi: 10.1016/j.scitotenv.2018.01.340
pubmed: 29454215
European Commission. Commission Regulation (EU) No 2018/213 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Official Journal of the European Union. 2018.