Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation.


Journal

Journal of hepatology
ISSN: 1600-0641
Titre abrégé: J Hepatol
Pays: Netherlands
ID NLM: 8503886

Informations de publication

Date de publication:
11 2020
Historique:
received: 13 09 2019
revised: 07 05 2020
accepted: 11 05 2020
pubmed: 29 5 2020
medline: 16 11 2021
entrez: 29 5 2020
Statut: ppublish

Résumé

Growing evidence shows that some non-coding RNAs (ncRNAs) contain small open reading frames (smORFs) that are translated into short peptides. Herein, we aimed to determine where and how these short peptides might promote hepatocellular carcinoma (HCC) development. We performed an RNA-immunoprecipitation followed by high-throughput sequencing (RIP-seq) assay with an antibody against ribosomal protein S6 (RPS6) on 4 cancer cell lines. Focusing on 1 long non-coding RNA (lncRNA), LINC00998, we used qPCR and public databases to evaluate its expression level in patients with HCC. Special vectors were constructed to confirm its coding potential. We also explored the function and mechanism of LINC00998-encoded peptide in tumor growth and metastasis. We discovered that many lncRNAs bind to RPS6 in cancer cells. One of these lncRNAs, LINC00998, encoded a small endogenous peptide, termed SMIM30. SMIM30, rather than the RNA itself, promoted HCC tumorigenesis by modulating cell proliferation and migration, and its level was correlated with poor survival in patients with HCC. Furthermore, SMIM30 was transcribed by c-Myc and then drove the membrane anchoring of the non-receptor tyrosine kinases SRC/YES1. Moreover, the downstream MAPK signaling pathway was activated by SRC/YES1. Our results not only unravel a new mechanism of HCC tumorigenesis promoted by ncRNA-encoded peptides, but also suggest that these peptides can serve as a new target for HCC cancer therapy and a new biomarker for HCC diagnosis and prognosis. Very little is known about how peptides activate signaling pathways that play a crucial role in diseases such as cancer. Specifically, we reported on a conserved peptide encoded by LINC00998, SMIM30. This peptide promoted the tumorigenesis of hepatocellular carcinoma (HCC) by modulating cell proliferation and migration. Of note, it bound the non-receptor tyrosine kinases, SRC/YES1, to drive their membrane anchoring and phosphorylation, activating the downstream MAPK signaling pathway. Our work not only unravels a new mechanism of HCC tumorigenesis promoted by peptides, but also demonstrates how the peptide works to activate a signaling pathway.

Sections du résumé

BACKGROUND & AIMS
Growing evidence shows that some non-coding RNAs (ncRNAs) contain small open reading frames (smORFs) that are translated into short peptides. Herein, we aimed to determine where and how these short peptides might promote hepatocellular carcinoma (HCC) development.
METHODS
We performed an RNA-immunoprecipitation followed by high-throughput sequencing (RIP-seq) assay with an antibody against ribosomal protein S6 (RPS6) on 4 cancer cell lines. Focusing on 1 long non-coding RNA (lncRNA), LINC00998, we used qPCR and public databases to evaluate its expression level in patients with HCC. Special vectors were constructed to confirm its coding potential. We also explored the function and mechanism of LINC00998-encoded peptide in tumor growth and metastasis.
RESULTS
We discovered that many lncRNAs bind to RPS6 in cancer cells. One of these lncRNAs, LINC00998, encoded a small endogenous peptide, termed SMIM30. SMIM30, rather than the RNA itself, promoted HCC tumorigenesis by modulating cell proliferation and migration, and its level was correlated with poor survival in patients with HCC. Furthermore, SMIM30 was transcribed by c-Myc and then drove the membrane anchoring of the non-receptor tyrosine kinases SRC/YES1. Moreover, the downstream MAPK signaling pathway was activated by SRC/YES1.
CONCLUSIONS
Our results not only unravel a new mechanism of HCC tumorigenesis promoted by ncRNA-encoded peptides, but also suggest that these peptides can serve as a new target for HCC cancer therapy and a new biomarker for HCC diagnosis and prognosis.
LAY SUMMARY
Very little is known about how peptides activate signaling pathways that play a crucial role in diseases such as cancer. Specifically, we reported on a conserved peptide encoded by LINC00998, SMIM30. This peptide promoted the tumorigenesis of hepatocellular carcinoma (HCC) by modulating cell proliferation and migration. Of note, it bound the non-receptor tyrosine kinases, SRC/YES1, to drive their membrane anchoring and phosphorylation, activating the downstream MAPK signaling pathway. Our work not only unravels a new mechanism of HCC tumorigenesis promoted by peptides, but also demonstrates how the peptide works to activate a signaling pathway.

Identifiants

pubmed: 32461121
pii: S0168-8278(20)30347-0
doi: 10.1016/j.jhep.2020.05.028
pii:
doi:

Substances chimiques

Membrane Proteins 0
Neoplasm Proteins 0
RNA, Long Noncoding 0
Proto-Oncogene Proteins c-yes EC 2.7.10.2
YES1 protein, human EC 2.7.10.2
src-Family Kinases EC 2.7.10.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1155-1169

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2020 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Conflict of interest The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details.

Auteurs

Yanan Pang (Y)

Changhai Hospital, Second Military Medical University, Shanghai 200433, China.

Zhiyong Liu (Z)

Changhai Hospital, Second Military Medical University, Shanghai 200433, China.

Huan Han (H)

Changhai Hospital, Second Military Medical University, Shanghai 200433, China.

Beilei Wang (B)

Changhai Hospital, Second Military Medical University, Shanghai 200433, China.

Wei Li (W)

Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.

Chuanbin Mao (C)

Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China. Electronic address: maophage@gmail.com.

Shanrong Liu (S)

Changhai Hospital, Second Military Medical University, Shanghai 200433, China. Electronic address: liushanrong01@126.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH