Immunotherapy of CT26 murine tumors is characterized by an oligoclonal response of tissue-resident memory T cells against the AH1 rejection antigen.
Animals
Antigens, Neoplasm
/ immunology
CD8-Positive T-Lymphocytes
/ immunology
Cell Line, Tumor
Colon
/ pathology
Colonic Neoplasms
/ immunology
Disease Models, Animal
Female
Humans
Immunologic Memory
Immunotherapy
/ methods
Interleukin-12
/ therapeutic use
Leukemia Virus, Murine
/ genetics
Lymphocyte Activation
Mice
Mice, Inbred BALB C
Peptides
/ genetics
Receptors, Antigen, T-Cell
/ genetics
Retroviridae Proteins, Oncogenic
/ genetics
Viral Envelope Proteins
/ genetics
T-cell receptor sequencing
immunotherapy
retroviral antigens
tumor immunology
tumor targeting
Journal
European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
08
10
2019
revised:
19
04
2020
accepted:
28
05
2020
pubmed:
30
5
2020
medline:
12
1
2021
entrez:
30
5
2020
Statut:
ppublish
Résumé
Mice bearing CT26 tumors can be cured by administration of L19-mIL12 or F8-mTNF, two antibody fusion proteins which selectively deliver their cytokine payload to the tumor. In both settings, cancer cures crucially depended on CD8
Identifiants
pubmed: 32470143
doi: 10.1002/eji.201948433
doi:
Substances chimiques
Antigens, Neoplasm
0
Peptides
0
Receptors, Antigen, T-Cell
0
Retroviridae Proteins, Oncogenic
0
Viral Envelope Proteins
0
Interleukin-12
187348-17-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1591-1597Subventions
Organisme : H2020 European Research Council
ID : 670603
Pays : International
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 310030_182003/1
Pays : International
Informations de copyright
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Schachter, J., Ribas, A., Long, G. V., Arance, A., Grob, J.-J., Mortier, L., Daud, A. et al., Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017. 390: 1853-1862.
Fyfe, G., Fisher, R. I., Rosenberg, S. A., Sznol, M., Parkinson, D. R. and Louie, A. C., Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 1995. 13: 688-696.
Atkins, M. B., Lotze, M. T., Dutcher, J. P., Fisher, R. I., Weiss, G., Margolin, K., Abrams, J. et al., High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 1999. 17: 2105-2116.
Hutmacher, C., Gonzalo Nunez, N., Liuzzi, A. R., Becher, B. and Neri, D., Targeted delivery of IL2 to the tumor stroma potentiates the action of immune checkpoint inhibitors by preferential activation of NK and CD8(+) T cells. Cancer Immunol. Res. 2019. 7: 572-583.
Probst, P., Kopp, J., Oxenius, A., Colombo, M. P., Ritz, D., Fugmann, T. and Neri, D., Sarcoma eradication by doxorubicin and targeted TNF relies upon CD8(+) T-cell recognition of a retroviral antigen. Cancer Res. 2017. 77: 3644-3654.
Puca, E., Probst, P., Stringhini, M., Murer, P., Pellegrini, G., Cazzamalli, S., Hutmacher, C. et al., The antibody-based delivery of interleukin-12 to solid tumors boosts NK and CD8(+) T cell activity and synergizes with immune checkpoint inhibitors. Int. J. Cancer 2020. 146: 2518-2530.
Reading, J. L., Galvez-Cancino, F., Swanton, C., Lladser, A., Peggs, K. S. and Quezada, S. A., The function and dysfunction of memory CD8(+) T cells in tumor immunity. Immunol. Rev. 2018. 283: 194-212.
Schumacher, T. N. and Schreiber, R. D., Neoantigens in cancer immunotherapy. Science 2015. 348: 69-74.
Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., Sucker, A. et al., Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015. 350: 207-211.
Laumont, C. M., Vincent, K., Hesnard, L., Audemard, E., Bonneil, E., Laverdure, J. P., Gendron, P. et al., Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 2018. 10. https://doi.org/10.1126/scitranslmed.aau5516
Jenkins, N. A., Copeland, N. G., Taylor, B. A. and Lee, B. K., Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 1982. 43: 26-36.
Huang, A. Y., Gulden, P. H., Woods, A. S., Thomas, M. C., Tong, C. D., Wang, W., Engelhard, V. H. et al., The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl. Acad. Sci. USA 1996. 93: 9730-9735.
Miller, C. T., Graham, L. J. and Bear, H. D., Adoptive immunotherapy (AIT) of established tumors with tumor antigen peptide-sensitized T cells. Cancer Res. 2004. 64: 1264-1264.
Rudqvist, N. P., Pilones, K. A., Lhuillier, C., Wennerberg, E., Sidhom, J. W., Emerson, R. O., Robins, H. S. et al., Radiotherapy and CTLA-4 blockade shape the TCR repertoire of tumor-infiltrating T Cells. Cancer Immunol. Res. 2018. 6: 139-150.
Villa, A., Trachsel, E., Kaspar, M., Schliemann, C., Sommavilla, R., Rybak, J. N., Rosli, C. et al., A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int. J. Cancer 2008. 122: 2405-2413.
Tarli, L., Balza, E., Viti, F., Borsi, L., Castellani, P., Berndorff, D., Dinkelborg, L. et al., A high-affinity human antibody that targets tumoral blood vessels. Blood 1999. 94: 192-198.
Pasche, N. and Neri, D., Immunocytokines: a novel class of potent armed antibodies. Drug Discov. Today 2012. 17: 583-590.
Hemmerle, T., Probst, P., Giovannoni, L., Green, A. J., Meyer, T. and Neri, D., The antibody-based targeted delivery of TNF in combination with doxorubicin eradicates sarcomas in mice and confers protective immunity. Br. J. Cancer 2013. 109: 1206-1213.
Murphy, K. and Weaver, C., Janeway's immunobiology, 9th ed. Garland Science/Taylor & Francis Group, LLC, New York, NY, 2016.
Probst, P., Stringhini, M., Ritz, D., Fugmann, T. and Neri, D., Antibody-based delivery of TNF to the tumor neovasculature potentiates the therapeutic activity of a peptide anticancer vaccine. Clin. Cancer Res. 2019. 25: 698-709.
Pesu, M., Muul, L., Kanno, Y. and O'Shea, J. J., Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma. Blood 2006. 108: 983-985.
Murray, T., Fuertes Marraco, S. A., Baumgaertner, P., Bordry, N., Cagnon, L., Donda, A., Romero, P. et al., Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. Front. Immunol. 2016. 7: 573.
Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973.
Dash, P., McClaren, J. L., Oguin, T. H., III, Rothwell, W., Todd, B., Morris, M. Y., Becksfort, J. et al., Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J. Clin. Invest. 2011. 121: 288-295.
Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S. and Sandberg, R., Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014. 9: 171-181.
Ngo, V. N., Korner, H., Gunn, M. D., Schmidt, K. N., Riminton, D. S., Cooper, M. D., Browning, J. L. et al., Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 1999. 189: 403-412.
Probst, P., Kopp, J., Oxenius, A., Colombo, M. P., Ritz, D., Fugmann, T. and Neri, D., Sarcoma eradication by doxorubicin and targeted TNF relies upon CD8+ T-cell recognition of a retroviral antigen. Cancer Res. 2017. 77: 3644-3654.
Kitaura, K., Shini, T., Matsutani, T. and Suzuki, R., A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains. BMC Immunol. 2016. 17: 38.
Bolger, A. M., Lohse, M. and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014. 30: 2114-2120.
Bray, N. L., Pimentel, H., Melsted, P. and Pachter, L., Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016. 34: 525-527.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P. et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013. 29: 15-21.
Robinson, M. D., McCarthy, D. J. and Smyth, G. K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010. 26: 139-140.