Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy.
Agenesis of Corpus Callosum
/ diagnostic imaging
Alu Elements
/ genetics
Amino Acid Sequence
Atrophy
Autism Spectrum Disorder
/ genetics
Cerebellum
/ diagnostic imaging
Deep Learning
Genes, Recessive
Hereditary Central Nervous System Demyelinating Diseases
/ diagnostic imaging
Humans
Infant, Newborn
Introns
/ genetics
Laryngomalacia
/ congenital
Male
Muscle Hypotonia
/ genetics
Mutation, Missense
Protein Isoforms
/ genetics
Pseudogenes
/ genetics
RNA Polymerase III
/ genetics
RNA, Messenger
/ genetics
Sequence Alignment
Sequence Homology, Amino Acid
Exome Sequencing
Whole Genome Sequencing
Journal
Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008
Informations de publication
Date de publication:
Oct 2020
Oct 2020
Historique:
received:
15
04
2020
accepted:
20
05
2020
pubmed:
3
6
2020
medline:
7
5
2021
entrez:
3
6
2020
Statut:
ppublish
Résumé
Pseudoexon inclusion caused by deep intronic variants is an important genetic cause for various disorders. Here, we present a case of a hypomyelinating leukodystrophy with developmental delay, intellectual disability, autism spectrum disorder, and hypodontia, which are consistent with autosomal recessive POLR3-related leukodystrophy. Whole-exome sequencing identified only a heterozygous missense variant (c.1451G>A) in POLR3A. To explore possible involvement of a deep intronic variant in another allele, we performed whole-genome sequencing of the patient with variant annotation by SpliceAI, a deep-learning-based splicing prediction tool. A deep intronic variant (c.645 + 312C>T) in POLR3A, which was predicted to cause inclusion of a pseudoexon derived from an Alu element, was identified and confirmed by mRNA analysis. These results clearly showed that whole-genome sequencing, in combination with deep-learning-based annotation tools such as SpliceAI, will bring us further benefits in detecting and evaluating possible pathogenic variants in deep intronic regions.
Identifiants
pubmed: 32483275
doi: 10.1038/s10038-020-0786-y
pii: 10.1038/s10038-020-0786-y
doi:
Substances chimiques
Protein Isoforms
0
RNA, Messenger
0
POLR3A protein, human
EC 2.7.7.6
RNA Polymerase III
EC 2.7.7.6
Types de publication
Case Reports
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
921-925Références
Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20:1122–30.
doi: 10.1038/gim.2017.247
Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136:1093–111.
doi: 10.1007/s00439-017-1809-4
Jian X, Boerwinkle E, Liu X. In silico tools for splicing defect prediction: a survey from the viewpoint of end users. Genet Med. 2014;16:497–503.
doi: 10.1038/gim.2013.176
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.
doi: 10.1016/j.cell.2018.12.015
Bernard G, Vanderver A. POLR3-related leukodystrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. editors. GeneReviews
Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T, et al. A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genom Med. 2019;7:e814.
Tadaka S, Katsuoka F, Ueki M, Kojima K, Makino S, Saito S, et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum Genome Var. 2019;6:28.
doi: 10.1038/s41439-019-0059-5
Lowell JL, Klein DA. Heteroduplex resolution using T7 endonuclease I in microbial community analyses. Biotechniques. 2000;28:676–8.
doi: 10.2144/00284st03
Potapov V, Ong JL. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE. 2017;12:e0169774.
doi: 10.1371/journal.pone.0169774
Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51:12–18.
doi: 10.1038/s41588-018-0295-5
Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med. 2020. https://doi.org/10.1038/s41436-020-0766-9 .
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11:345–55.
doi: 10.1038/nrg2776
Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3’ splice-site selection in Alu exons. Science. 2003;300:1288–91.
doi: 10.1126/science.1082588
Ram O, Schwartz S, Ast G. Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol. 2008;28:3513–25.
doi: 10.1128/MCB.02279-07