High circ-SEC31A expression predicts unfavorable prognoses in non-small cell lung cancer by regulating the miR-520a-5p/GOT-2 axis.
A549 Cells
Animals
Aspartate Aminotransferase, Mitochondrial
/ genetics
Carcinoma, Non-Small-Cell Lung
/ genetics
Cell Movement
/ drug effects
Cell Proliferation
/ drug effects
Female
Gene Expression Regulation, Neoplastic
Humans
Kaplan-Meier Estimate
Lung
/ pathology
Lung Neoplasms
/ genetics
Male
Mice
MicroRNAs
/ antagonists & inhibitors
Middle Aged
Neoplasm Invasiveness
/ genetics
Prognosis
RNA, Circular
/ metabolism
RNA-Seq
Up-Regulation
Xenograft Model Antitumor Assays
GOT-2
hsa_circ_0001421 (circ-SEC31A)
miR-520a-5p
non-small cell lung cancer
proliferation
Journal
Aging
ISSN: 1945-4589
Titre abrégé: Aging (Albany NY)
Pays: United States
ID NLM: 101508617
Informations de publication
Date de publication:
04 06 2020
04 06 2020
Historique:
received:
05
02
2020
accepted:
20
04
2020
pubmed:
6
6
2020
medline:
9
3
2021
entrez:
6
6
2020
Statut:
ppublish
Résumé
Dysregulation of circular RNAs (circRNAs) has recently been shown to play important regulatory roles in cancer development and progression, including non-small cell lung cancer (NSCLC). However, the roles of most circRNAs in NSCLC are still unknown. In this study, we found that hsa_circ_0001421 (circ-SEC31A) was upregulated in NSCLC tissues and cell lines. Increased circ-SEC31A expression in NSCLC was significantly correlated with malignant characteristics and served as an independent risk factor for the post-surgical overall survival of NSCLC patients. Reduced circ-SEC31A expression in NSCLC decreased tumor cell proliferation, migration, invasion, and malate-aspartate metabolism. Mechanistically, we demonstrated that silencing circ-SEC31A downregulated GOT-2 expression by relieving the sponging effect of miR-520a-5p, which resulted in significantly reduced malate-aspartate metabolism in NSCLC cells. Taken together, these results revealed the important role of circ-SEC31A in the proliferation, migration, invasion, and metabolic regulation of NSCLC cells, providing a new perspective on circRNAs in NSCLC progression.
Identifiants
pubmed: 32499446
pii: 103264
doi: 10.18632/aging.103264
pmc: PMC7346017
doi:
Substances chimiques
MIRN520 microRNA, human
0
MicroRNAs
0
RNA, Circular
0
Aspartate Aminotransferase, Mitochondrial
EC 2.6.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10381-10397Références
Nature. 2017 Jun 1;546(7656):168-172
pubmed: 28538732
Eur J Heart Fail. 2017 Jun;19(6):701-709
pubmed: 28345158
Nat Commun. 2018 Nov 30;9(1):5110
pubmed: 30504895
Protein Expr Purif. 2015 Sep;113:102-6
pubmed: 26003525
Science. 2009 May 22;324(5930):1029-33
pubmed: 19460998
Mech Ageing Dev. 2019 Mar;178:16-24
pubmed: 30513309
Tumour Biol. 2014 Sep;35(9):8733-42
pubmed: 24870597
Cell. 2016 Aug 11;166(4):1055-1056
pubmed: 27518567
Mol Cell. 2013 Sep 26;51(6):792-806
pubmed: 24035497
Aging (Albany NY). 2018 Apr 27;10(4):775-788
pubmed: 29706607
Oncogenesis. 2016 May 30;5(5):e229
pubmed: 27239961
Exp Ther Med. 2017 Dec;14(6):6207-6212
pubmed: 29285178
Cell Death Dis. 2018 Mar 16;9(4):417
pubmed: 29549306
Nat Rev Genet. 2017 May;18(5):272-273
pubmed: 28366936
Nat Struct Mol Biol. 2015 Mar;22(3):256-64
pubmed: 25664725
Adv Exp Med Biol. 2018;1086:17-35
pubmed: 30232750
PLoS One. 2012;7(2):e30733
pubmed: 22319583
Mol Cancer. 2018 Sep 20;17(1):138
pubmed: 30236141
Cell. 2008 Sep 5;134(5):703-7
pubmed: 18775299
Mol Cell. 2017 Apr 6;66(1):22-37.e9
pubmed: 28344082
Mol Med Rep. 2015 Jul;12(1):1016-22
pubmed: 25816091
Cell. 2014 Sep 25;159(1):13-14
pubmed: 25259915
Biochem Cell Biol. 2018 Dec;96(6):761-768
pubmed: 29958090
Genome Biol. 2015 Jun 16;16:126
pubmed: 26076956
Exp Ther Med. 2019 Sep;18(3):2199-2206
pubmed: 31410172
Cell. 2014 Sep 25;159(1):134-147
pubmed: 25242744
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50
pubmed: 18032601
J Med Genet. 2015 Oct;52(10):710-8
pubmed: 26358722
Am J Respir Crit Care Med. 2017 Dec 1;196(11):1443-1455
pubmed: 28853613
Nature. 2018 Jan 24;553(7689):446-454
pubmed: 29364287
Cell Res. 2019 Aug;29(8):628-640
pubmed: 31209250
Development. 2016 Jun 1;143(11):1838-47
pubmed: 27246710
Nucleic Acids Res. 2012 Jan;40(Database issue):D972-7
pubmed: 22139933
Br J Cancer. 2017 Feb 28;116(5):626-633
pubmed: 28081541
Radiographics. 2018 Mar-Apr;38(2):374-391
pubmed: 29528831
Lancet. 2011 Nov 12;378(9804):1727-40
pubmed: 21565398
Nat Rev Genet. 2016 May;17(5):272-83
pubmed: 27040487
CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32
pubmed: 26808342
Int J Cancer. 2019 Apr 15;144(8):1941-1953
pubmed: 30350310
Circ Res. 2013 Oct 12;113(9):1065-75
pubmed: 23963726
Cell Res. 2017 May;27(5):626-641
pubmed: 28281539
Mol Cell. 2015 Jun 4;58(5):870-85
pubmed: 25921068
J Hepatol. 2018 Jun;68(6):1214-1227
pubmed: 29378234
Mol Cancer. 2018 Jan 31;17(1):19
pubmed: 29386015
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30
pubmed: 26742998
Genome Biol. 2014 Jul 29;15(7):409
pubmed: 25070500
Mol Cancer. 2019 Jan 21;18(1):13
pubmed: 30665425
J Exp Clin Cancer Res. 2018 Jul 31;37(1):177
pubmed: 30064461
Mol Cancer. 2018 Sep 27;17(1):140
pubmed: 30261900
Cardiovasc Res. 2017 Mar 1;113(3):298-309
pubmed: 28082450
Nature. 2013 Apr 4;496(7443):101-5
pubmed: 23535601
Nature. 2016 Oct 6;538(7623):114-117
pubmed: 27680702
Genome Res. 2019 Mar;29(3):356-366
pubmed: 30692147
Mol Cancer. 2019 Feb 18;18(1):25
pubmed: 30777076
Nature. 2013 Mar 21;495(7441):384-8
pubmed: 23446346
Cell. 2015 Jul 30;162(3):552-63
pubmed: 26232225
Nat Commun. 2016 Aug 19;7:12429
pubmed: 27539542
Cell. 2004 Jan 23;116(2):281-97
pubmed: 14744438