Differential Responses of a Coastal Prokaryotic Community to Phytoplanktonic Organic Matter Derived from Cellular Components and Exudates.
16S rRNA gene
marine prokaryotes
metagenomic data
microcosm
phytoplankton bloom
Journal
Microbes and environments
ISSN: 1347-4405
Titre abrégé: Microbes Environ
Pays: Japan
ID NLM: 9710937
Informations de publication
Date de publication:
2020
2020
Historique:
entrez:
20
6
2020
pubmed:
20
6
2020
medline:
26
3
2021
Statut:
ppublish
Résumé
The phytoplanktonic production and prokaryotic consumption of organic matter significantly contribute to marine carbon cycling. Organic matter released from phytoplankton via three processes (exudation of living cells, cell disruption through grazing, and viral lysis) shows distinct chemical properties. We herein investigated the effects of phytoplanktonic whole-cell fractions (WF) (representing cell disruption by grazing) and extracellular fractions (EF) (representing exudates) prepared from Heterosigma akashiwo, a bloom-forming Raphidophyceae, on prokaryotic communities using culture-based experiments. We analyzed prokaryotic community changes for two weeks. The shift in cell abundance by both treatments showed similar dynamics, reaching the first peak (~4.1×10
Identifiants
pubmed: 32554942
doi: 10.1264/jsme2.ME20033
pmc: PMC7511794
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5756-60
pubmed: 22451938
Appl Environ Microbiol. 2011 Jun;77(12):4055-65
pubmed: 21515719
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Environ Res. 2007 Mar;103(3):299-304
pubmed: 17049343
ISME J. 2018 Jun;12(6):1532-1542
pubmed: 29703955
ISME J. 2018 May;12(5):1287-1295
pubmed: 29382948
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Front Microbiol. 2017 Mar 24;8:442
pubmed: 28392779
Science. 1998 Jul 10;281(5374):237-40
pubmed: 9657713
Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42
pubmed: 23193287
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Front Microbiol. 2015 Aug 11;6:805
pubmed: 26322028
ISME J. 2016 Sep;10(9):2158-73
pubmed: 26953597
Sci Rep. 2012;2:696
pubmed: 23019517
Can J Microbiol. 1962 Apr;8:229-39
pubmed: 13902807
Elife. 2016 Apr 07;5:e11888
pubmed: 27054497
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Nat Rev Microbiol. 2014 Oct;12(10):686-98
pubmed: 25134618
Nat Microbiol. 2016 Feb 29;1:16005
pubmed: 27572439
Bioinformatics. 2012 Jul 15;28(14):1823-9
pubmed: 22556368
Nature. 2008 Feb 7;451(7179):708-11
pubmed: 18223640
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3805-10
pubmed: 18316740
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
Nat Rev Microbiol. 2020 Jan;18(1):21-34
pubmed: 31690825
Plant Cell. 2014 Jun 10;26(6):2689-2707
pubmed: 24920329
PLoS One. 2014 Aug 21;9(8):e105592
pubmed: 25144201
ISME J. 2010 Jun;4(6):784-98
pubmed: 20072162
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Science. 2015 Feb 13;347(6223):1257594
pubmed: 25678667
Sci Data. 2019 Jul 22;6(1):129
pubmed: 31332186
PeerJ. 2016 Oct 18;4:e2584
pubmed: 27781170
Environ Microbiol. 2014 Jun;16(6):1668-81
pubmed: 24020678
Environ Microbiol. 2018 Aug;20(8):3001-3011
pubmed: 30047191
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
ISME J. 2019 Oct;13(10):2551-2565
pubmed: 31227815
Science. 2012 May 4;336(6081):608-11
pubmed: 22556258
Nature. 2005 Sep 15;437(7057):356-61
pubmed: 16163346
Appl Environ Microbiol. 2011 Nov;77(21):7490-8
pubmed: 21742918
BMC Bioinformatics. 2010 Oct 30;11:538
pubmed: 21034504
Genome Biol Evol. 2016 Jun 03;8(5):1556-70
pubmed: 27189983
Trends Microbiol. 2016 Oct;24(10):821-832
pubmed: 27395772
Nature. 2004 May 27;429(6990):403-7
pubmed: 15164060