A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling.
B-Lymphocytes
/ immunology
Cell Differentiation
Dendritic Cells
/ metabolism
Endothelial Cells
/ metabolism
Fibroblasts
/ metabolism
Gene Expression Regulation, Neoplastic
Humans
Killer Cells, Natural
/ immunology
Macrophages
/ pathology
Monocytes
/ pathology
Neoplasms
/ genetics
Organ Specificity
Phenotype
RNA-Seq
Reproducibility of Results
Single-Cell Analysis
Stochastic Processes
Stromal Cells
/ metabolism
Tumor Microenvironment
Journal
Cell research
ISSN: 1748-7838
Titre abrégé: Cell Res
Pays: England
ID NLM: 9425763
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
09
10
2019
accepted:
05
05
2020
pubmed:
21
6
2020
medline:
2
10
2021
entrez:
21
6
2020
Statut:
ppublish
Résumé
The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4
Identifiants
pubmed: 32561858
doi: 10.1038/s41422-020-0355-0
pii: 10.1038/s41422-020-0355-0
pmc: PMC7608385
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
745-762Références
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–96 (2016).
pubmed: 4944528
pmcid: 4944528
Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).
pubmed: 29988129
Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).
pubmed: 29198524
pmcid: 5878932
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
pubmed: 31292543
pmcid: 6687507
Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).
pubmed: 28360267
pmcid: 5519096
Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 572, 74–79 (2019).
pubmed: 31341285
pmcid: 6754173
Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).
pubmed: 31273297
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).
pubmed: 30388456
pmcid: 6641984
Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).
pubmed: 30814735
Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044 (2018).
pubmed: 30318149
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 6700744
pmcid: 6700744
Pusztaszeri, M. P., Seelentag, W. & Bosman, F. T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006).
pubmed: 16234507
Müller, A. M., Skrzynski, C., Skipka, G. & Müller, K.-M. Expression of von Willebrand factor by human pulmonary endothelial cells in vivo. Respiration 69, 526–533 (2002).
pubmed: 12457006
Dhaun, N. & Webb, D. J. Endothelins in cardiovascular biology and therapeutics. Nat. Rev. Cardiol. 2019 6, 1 (2019).
Strickland, L. A. et al. Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF). J. Pathol. 206, 466–475 (2005).
pubmed: 15971170
Rupp, C. et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 34, 815–825 (2015).
pubmed: 24632618
van Beijnum, J. R. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108, 2339–2348 (2006).
pubmed: 16794251
Aibar, S. et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892
pmcid: 5937676
Eelen, G. et al. Endothelial cell metabolism. Physiol. Rev. 98, 3–58 (2018).
pubmed: 29167330
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
pubmed: 27550820
Kurahashi, M. et al. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J. Physiol. 589, 697–710 (2011).
pubmed: 21173079
Lee, H., Koh, B. H., Peri, L. E., Sanders, K. M. & Koh, S. D. Purinergic inhibitory regulation of murine detrusor muscles mediated by PDGFRα + interstitial cells. J. Physiol. 592, 1283–1293 (2014).
pubmed: 24396055
pmcid: 3961087
Puddifoot, C. A., Wu, M., Sung, R.-J. & Joiner, W. J. Ly6h regulates trafficking of Alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling. J. Neurosci. 35, 3420–3430 (2015).
pubmed: 25716842
pmcid: 4339353
Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386 (2018).
pubmed: 30270042
pmcid: 6176871
Fujisawa, M. et al. Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS One 13, 1–15 (2018).
Jabara, S. et al. Stromal cells of the human postmenopausal ovary display a distinctive biochemical and molecular phenotype. J. Clin. Endocrinol. Metab. 88, 484–492 (2003).
pubmed: 12519894
Pisarska, M. D., Barlow, G. & Kuo, F. T. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 152, 1199–1208 (2011).
pubmed: 21248146
pmcid: 3206711
Rynne-Vidal, A. et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J. Pathol. 242, 140–151 (2017).
pubmed: 28247413
pmcid: 5468005
Saunders, W. B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).
pubmed: 17030988
pmcid: 2064509
Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575–1590 (2018).
pubmed: 30415840
Haudenschild, D. R. et al. Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J. Biol. Chem. 286, 43250–43258 (2011).
pubmed: 21940632
pmcid: 3234822
Staudacher, J. J. et al. Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer. Sci. Rep. 7, 1–9 (2017).
Simone, T. & Higgins, P. Inhibition of SERPINE1 function attenuates wound closure in response to tissue injury: a role for PAI-1 in re-epithelialization and granulation tissue formation. J. Dev. Biol. 3, 11–24 (2015).
Ghahary, A. et al. Mannose-6-phosphate/IGF-II receptors mediate the effects of IGF-1-induced latent transforming growth factor β1 on expression of type I collagen and collagenase in dermal fibroblasts. Growth Factors 17, 167–176 (2000).
pubmed: 10705575
Brett, A., Pandey, S. & Fraizer, G. The Wilms’ tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells. Mol. Cancer 12, 1–13 (2013).
Volksdorf, T. et al. Tight junction proteins Claudin-1 and Occludin are important for cutaneous wound healing. Am. J. Pathol. 187, 1301–1312 (2017).
pubmed: 28412298
Chim, S. M. et al. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J. Biol. Chem. 286, 22035–22046 (2011).
pubmed: 21531721
pmcid: 3121348
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 Secretion. Cell 121, 335–348 (2005).
pubmed: 15882617
Nabet, B. Y. et al. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170, 352–366 (2017).
pubmed: 28709002
pmcid: 6611169
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
pubmed: 28428369
pmcid: 5775029
Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).
pubmed: 27637149
pmcid: 5040826
Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8, 935–947 (2008).
pubmed: 19029989
Chopin, M. et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J. Exp. Med. 210, 2967–2980 (2013).
pubmed: 24249112
pmcid: 3865480
Geissmann, F. et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J. Exp. Med. 198, 623–634 (2003).
pubmed: 12925678
pmcid: 2194172
Wu, C. H., Huang, T. C. & Lin, B. F. Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation. J. Nutr. Biochem. 41, 65–72 (2017).
pubmed: 28040582
Salaun, B. et al. Cloning and characterization of the mouse homologue of the human dendritic cell maturation marker CD208/DC-LAMP. Eur. J. Immunol. 33, 2619–2629 (2003).
pubmed: 12938238
Gatto, D., Wood, K. & Brink, R. EBI2 operates independently of but in cooperation with CXCR5 and CCR7 to direct B cell migration and organization in follicles and the germinal center. J. Immunol. 187, 4621–4628 (2011).
pubmed: 21948984
Takemori, T., Kaji, T., Takahashi, Y., Shimoda, M. & Rajewsky, K. Generation of memory B cells inside and outside germinal centers. Eur. J. Immunol. 44, 1258–1264 (2014).
pubmed: 24610726
Shi, G.-X., Harrison, K., Wilson, G. L., Moratz, C. & Kehrl, J. H. RGS13 regulates germinal center b lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol. 169, 2507–2515 (2002).
pubmed: 12193720
Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).
pubmed: 31002794
pmcid: 6538279
Turqueti-Neves, A. et al. B-cell-intrinsic STAT6 signaling controls germinal center formation. Eur. J. Immunol. 44, 2130–2138 (2014).
pubmed: 24777733
Gustafson, C. E. et al. Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunol. 7, 467–477 (2014).
pubmed: 24045575
Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).
pubmed: 29942094
Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).
pubmed: 29429633
pmcid: 5847168
Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).
pubmed: 29942092
Zheng, C. et al. Landscape of infiltrating t cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).
pubmed: 28622514
Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986 (2018).
pubmed: 30413361
pmcid: 6269138
André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 (2018).
pubmed: 30503213
pmcid: 6292840
van Montfoort, N. et al. NKG2A blockade potentiates cd8 t cell immunity induced by cancer vaccines. Cell 175, 1744–1755 (2018).
pubmed: 30503208
pmcid: 6354585
Terawaki, S. et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of t cell-mediated immunity. J. Immunol. 186, 2772–2779 (2011).
pubmed: 21263073
Ancuta, P. et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics 10, 403 (2009).
pubmed: 19712453
pmcid: 2741492
Rőszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015, 1–16 (2015).
Zagórska, A., Través, P. G., Lew, E. D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15, 920–928 (2014).
pubmed: 25194421
pmcid: 4169336
Hart, K. M., Bak, S. P., Alonso, A. & Berwin, B. Phenotypic and functional delineation of nurine CX3CR1+ monocyte-derived cells in ovarian cancer. Neoplasia 11, 564–IN10 (2009).
pubmed: 19484145
pmcid: 2685445
Zheng, J. et al. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol. Cancer 12, 141 (2013).
pubmed: 24245985
pmcid: 4176124
Schraufstatter, I. U., Zhao, M., Khaldoyanidi, S. K. & Discipio, R. G. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology 135, 287–298 (2012).
pubmed: 22117697
pmcid: 3372745
Steen, K. A., Xu, H. & Bernlohr, D. A. FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol. Cell. Biol. 37, e00282–16 (2017).
Pan, C. et al. Aldehyde dehydrogenase 2 inhibits inflammatory response and regulates atherosclerotic plaque. Oncotarget 7, 35562–35576 (2016).
pubmed: 27191745
pmcid: 5094945
Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through Hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341 (2018).
pubmed: 30054204
Xu, H., Chen, M., Reid, D. M. & Forrester, J. V. LYVE-1–positive macrophages are present in normal murine eyes. Investig. Opthalmol. Vis. Sci. 48, 2162 (2007).
Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).
pubmed: 30872492
Wu, T. et al. Regulating innate and adaptive immunity for controlling SIV infection by 25-hydroxycholesterol. Front. Immunol. 9, 2686 (2018).
pubmed: 30524435
pmcid: 6262225
Hogan, L. E., Jones, D. C. & Allen, R. L. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci. Rep. 6, 21780 (2016).
pubmed: 26908331
pmcid: 4764857
Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).
pubmed: 18064003
van Galen, P. et al. Single-cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281 (2019).
pubmed: 30827681
pmcid: 6515904
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
pubmed: 31197017
pmcid: 6727976
Marvel, D. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Investig. 125, 3356–3364 (2015).
pubmed: 26168215
Ryckman, C., Vandal, K., Rouleau, P., Talbot, M. & Tessier, P. A. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170, 3233–3242 (2003).
pubmed: 12626582
Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).
pubmed: 27381735
pmcid: 4935811
Liu, H., Shi, B., Huang, C.-C., Eksarko, P. & Pope, R. M. Transcriptional diversity during monocyte to macrophage differentiation. Immunol. Lett. 117, 70–80 (2008).
pubmed: 18276018
pmcid: 2838727
Kelly, L. M. MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997 (2000).
pubmed: 10790365
pmcid: 305687
Hickey, M. M. et al. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Investig. 120, 2699–2714 (2010).
pubmed: 20644254
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
pubmed: 28759029
pmcid: 5669064
Zhang, A. W. et al. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat. Methods 16, 1007–1015 (2019).
pubmed: 31501550
Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).
pubmed: 31061481
pmcid: 6610714
Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
pubmed: 30643254
pmcid: 6365097
Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).
pubmed: 19898495
pmcid: 2789415
Iijima, N. & Iwasaki, A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature 533, 552–556 (2016).
pubmed: 27225131
pmcid: 4883597
Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).
pubmed: 20156971
pmcid: 2839156
Borst, J., Ahrends, T., Bąbała, N., Melief, C. J. M. & Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).
pubmed: 30057419
Van Den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
pubmed: 28960196
Buffa, F. M., Harris, A. L., West, C. M. & Miller, C. J. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br. J. Cancer 102, 428–435 (2010).
pubmed: 20087356
pmcid: 2816644
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).
pubmed: 30954475
pmcid: 6853612
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).
pubmed: 30954476
pmcid: 6625319
Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, eaaq0305 (2018).
pubmed: 30333237
pmcid: 6448773
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
pubmed: 5764547
pmcid: 5764547
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 1–16 (2018).
Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. bioRxiv https://doi.org/10.1101/079509 (2016).
Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat. Commun. 7, 1–9 (2016).
Federico, A. & Monti, S. hypeR: an R package for geneset enrichment workflows. Bioinformatics 36, 1307–1308 (2019).
Bosisio, F. M. et al. Functional heterogeneity of lymphocytic patterns in primary melanoma dissected through single-cell multiplexing. Elife 9, 1–21 (2020).
Boeckx, B. et al. The genomic landscape of nonsmall cell lung carcinoma in never smokers. Int. J. Cancer 146, 3207–3218 (2019).
pubmed: 31745979
Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998 (2018).
pubmed: 29909982
pmcid: 6086935