Intrinsic disorder in protein sense-antisense recognition.
MoRFs
intrinsically disordered protein
intrinsically disordered protein region
protein-protein interactions
sense-antisense complementarity
Journal
Journal of molecular recognition : JMR
ISSN: 1099-1352
Titre abrégé: J Mol Recognit
Pays: England
ID NLM: 9004580
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
04
03
2020
revised:
04
05
2020
accepted:
18
05
2020
pubmed:
24
6
2020
medline:
6
11
2021
entrez:
24
6
2020
Statut:
ppublish
Résumé
In addition to the well-established sense-antisense complementarity abundantly present in the nucleic acid world and serving as a basic principle of the specific double-helical structure of DNA, production of mRNA, and genetic code-based biosynthesis of proteins, sense-antisense complementarity is also present in proteins, where sense and antisense peptides were shown to interact with each other with increased probability. In nucleic acids, sense-antisense complementarity is achieved via the Watson-Crick complementarity of the base pairs or nucleotide pairing. In proteins, the complementarity between sense and antisense peptides depends on a specific hydropathic pattern, where codons for hydrophilic and hydrophobic amino acids in a sense peptide are complemented by the codons for hydrophobic and hydrophilic amino acids in its antisense counterpart. We are showing here that in addition to this pattern of the complementary hydrophobicity, sense and antisense peptides are characterized by the complementary order-disorder patterns and show complementarity in sequence distribution of their disorder-based interaction sites. We also discuss how this order-disorder complementarity can be related to protein evolution.
Substances chimiques
Intrinsically Disordered Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2868Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Biro J. Comparative analysis of specificity in protein-protein interactions. Part III: models of the gene expression based on the sequential complementary coding of some pituitary proteins. Med Hypotheses. 1981;7:995-1007.
Biro J. Comparative analysis of specificity in protein-protein interactions. Part II: the complementary coding of some proteins as the possible source of specificity in protein-protein interactions. Med Hypotheses. 1981;7:981-993.
Biro J. Comparative analysis of specificity in protein-protein interactions. Part I: a theoretical and mathematical approach to specificity in protein-protein interactions. Med Hypotheses. 1981;7:969-979.
Bost KL, Smith EM, Blalock JE. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci U S A. 1985;82:1372-1375.
Blalock JE, Bost KL. Binding of peptides that are specified by complementary Rnas. Biochem J. 1986;234:679-683.
Eaton HL, Austin RE, Fesik SW, Martin SF. NMR study of the possible interaction in solution of angiotensin II with a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci U S A. 1989;86:9767-9769.
Shai Y, Brunck TK, Chaiken IM. Antisense peptide recognition of sense peptides: sequence simplification and evaluation of forces underlying the interaction. Biochemistry. 1989;28:8804-8811.
Blalock JE. Genetic origins of protein shape and interaction rules. Nat Med. 1995;1:876-878.
Root-Bernstein RS, Holsworth DD. Antisense peptides: a critical mini-review. J Theor Biol. 1998;190:107-119.
Siemion IZ, Cebrat M, Kluczyk A. The problem of amino acid complementarity and antisense peptides. Curr Protein Pept Sci. 2004;5:507-527.
Root-Bernstein RS. Peptide self-aggregation and peptide complementarity as bases for the evolution of peptide receptors: a review. J Mol Recognit. 2005;18:40-49.
Biro JC. The proteomic code: a molecular recognition code for proteins. Theor Biol Med Model. 2007;4:45.
Stambuk N, Manojlovic Z, Turcic P, Martinic R, et al. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin. Int J Mol Sci. 2014;15:9209-9223.
Root-Bernstein R. How to make a non-antigenic protein (auto) antigenic: molecular complementarity alters antigen processing and activates adaptive-innate immunity synergy. Anti Cancer Agents Med Chem. 2015;15:1242-1259.
Miller AD. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science. Expert Opin Biol Ther. 2015;15:245-267.
Stambuk N, Konjevoda P, Turcic P, Kover K, et al. Genetic coding algorithm for sense and antisense peptide interactions. Biosystems. 2018;164:199-216.
Hayakawa A, Kojima T, Yokoyama I, Suzuki H, Tajiri H, Nakashima I. A short peptide derived from the antisense homology box of Fas ligand induces apoptosis in anti-Fas antibody-insensitive human ovarian cancer cells. Apoptosis. 2000;5:37-41.
Baranyi L, Campbell W, Ohshima K, et al. Antisense homology box-derived peptides represent a new class of endothelin receptor inhibitors. Peptides. 1998;19:211-223.
Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros ML, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995;1:894-901.
Bost KL, Blalock JE. Molecular characterization of a corticotropin (ACTH) receptor. Mol Cell Endocrinol. 1986;44:1-9.
Mulchahey JJ, Neill JD, Dion LD, Bost KL, Blalock JE. Antibodies to the binding site of the receptor for luteinizing hormone-releasing hormone (LHRH): generation with a synthetic decapeptide encoded by an RNA complementary to LHRH mRNA. Proc Natl Acad Sci U S A. 1986;83:9714-9718.
Carr DJ, Bost KL, Blalock JE. An antibody to a peptide specified by an RNA that is complementary to gamma-endorphin mRNA recognizes an opiate receptor. J Neuroimmunol. 1986;12:329-337.
Brentani RR, Ribeiro SF, Potocnjak P, Pasqualini R, Lopes JD, Nakaie CR. Characterization of the cellular receptor for fibronectin through a hydropathic complementarity approach. Proc Natl Acad Sci U S A. 1988;85:364-367.
Elton TS, Dion LD, Bost KL, Oparil S, Blalock JE. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci U S A. 1988;85:2518-2522.
Blalock JE, Smith EM. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem Biophys Res Commun. 1984;121:203-207.
Dunker AK, Garner E, Guilliot S, Romero P, et al. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput. 1998;473-484.
Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999;293:321-331.
Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins. 2000;41:415-427.
Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model. 2001;19:26-59.
Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci. 2002;27:527-533.
Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK. Natively disordered proteins. In: Buchner J, Kiefhaber T, eds. Handbook of Protein Folding. Weinheim, Germany: Wiley-VCH, Verlag GmbH & Co. KGaA; 2005:271-353.
Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta. 1804;2010:1231-1264.
Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep. 2013;5:1.
Uversky VN. Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta. 1834;2013:932-951.
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci. 2013;22:693-724.
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev. 2014;114:6779-6805.
Romero PR, Zaidi S, Fang YY, et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A. 2006;103:8390-8395.
Uversky VN. p53 Proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int J Mol Sci. 2016;17:1874.
Uversky VN. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 2015;282:1182-1189.
Smith LM, Kelleher NL, Consortium for top down Proteomics. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10:186-187.
Schluter H, Apweiler R, Holzhutter HG, Jungblut PR. Finding one's way in proteomics: a protein species nomenclature. Chem Cent J. 2009;3:11.
Uhlen M, Bjorling E, Agaton C, Szigyarto CA, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920-1932.
Farrah T, Deutsch EW, Omenn GS, et al. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven human proteome project. J Proteome Res. 2014;13:60-75.
Farrah T, Deutsch EW, Hoopmann MR, et al. The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res. 2013;12:162-171.
Reddy PJ, Ray S, Srivastava S. The quest of the human proteome and the missing proteins: digging deeper. OMICS. 2015;19:276-282.
Kim MS, Pinto SM, Getnet D, Nirujogi RS, et al. A draft map of the human proteome. Nature. 2014;509:575.
Eisen HN. Specificity and degeneracy in antigen recognition: yin and yang in the immune system. Annu Rev Immunol. 2001;19:1-21.
Wucherpfennig KW, Allen PM, Celada F, et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol. 2007;19:216-224.
James LC, Roversi P, Tawfik DS. Antibody multispecificity mediated by conformational diversity. Science. 2003;299:1362-1367.
Demchenko AP. Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit. 2001;14:42-61.
Ma B, Shatsky M, Wolfson HJ, Nussinov R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 2002;11:184-197.
Edmundson AB, Ely KR, Herron JN, Cheson BD. The binding of opioid peptides to the mcg light chain dimer: flexible keys and adjustable locks. Mol Immunol. 1987;24:915-935.
Westhof E, Altschuh D, Moras D, et al. Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature. 1984;311:123-126.
Tainer JA, Getzoff ED, Paterson Y, Olson AJ, Lerner RA. The atomic mobility component of protein antigenicity. Annu Rev Immunol. 1985;3:501-535.
Goh GK, Dunker AK, Foster JA, Uversky VN. HIV vaccine mystery and viral shell disorder. Biomolecules. 2019;9:178.
Van Regenmortel MH. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int J Mol Sci. 2016;17:1591.
Hemmings HCJ, Nairn AC, Aswad DW, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J Neurosci. 1984;4:99-110.
Gast K, Damaschun H, Eckert K, et al. Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry. 1995;34:13211-13218.
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996;35:13709-13715.
Romero P, Obradovic Z, Kissinger CR, Villafranca JE, et al. Thousands of proteins likely to have long disordered regions. Pac Symp Biocomput. 1998;437-448.
Garner E, Cannon P, Romero P, Obradovic Z, Dunker AK. Predicting disordered regions from amino acid sequence: common themes despite differing structural characterization. Genome Inform Ser Workshop Genome Inform. 1998;9:201-213.
Williams RM, Obradovi Z, Mathura V, Braun W, et al. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput. 2001;89-100.
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins. 2001;42:38-48.
Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J. 2007;92:1439-1456.
Vacic V, Uversky VN, Dunker AK, Lonardi S. Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics. 2007;8:211.
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506-D515.
Pundir S, Martin MJ, O'Donovan C. UniProt protein knowledgebase. Methods Mol Biol. 2017;1558:41-55.
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158-D169.
Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 2000;28:1102-1104.
Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics. 2006;7:208.
Peng K, Vucetic S, Radivojac P, Brown CJ, et al. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinforma Comput Biol. 2005;3:35-60.
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 1804;2010:996-1010.
Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics. 2005;21:3433-3434.
Dosztanyi Z, Csizmok V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol. 2005;347:827-839.
Meszaros B, Simon I, Dosztanyi Z. Prediction of protein binding regions in disordered proteins. PLoS Comput Biol. 2009;5:e1000376.
Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics. 2009;25:2745-2746.
Berman HM, Westbrook J, Feng Z, Gilliland G, et al. The protein data bank. Nucleic Acids Res. 2000;28:235-242.
Sickmeier M, Hamilton JA, LeGall T, et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 2007;35:D786-D793.
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-132.
Dyson HJ, Wright PE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol. 2002;12:54-60.
Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit. 2005;18:343-384.
Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry. 2005;44:12454-12470.
Mohan A, Oldfield CJ, Radivojac P, et al. Analysis of molecular recognition features (MoRFs). J Mol Biol. 2006;362:1043-1059.
Vacic V, Oldfield CJ, Mohan A, et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res. 2007;6:2351-2366.
Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK. Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry. 2007;46:13468-13477.
Tropsha A, Kizer JS, Chaiken IM. Making sense from antisense: a review of experimental data and developing ideas on sense-antisense peptide recognition. J Mol Recognit. 1992;5:43-54.
Kastritis PL, Bonvin AM. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface. 2013;10:20120835.
Stambuk N, Konjevoda P, Manojlovic Z. Novak Kujundzic, R. In: Ortuno F, Rojas I, eds. 4th International Conference, IWBBIO: International Conference on Bioinformatics and Biomedical Engineering. Granada, Spain: Springer; 2016:91-102.
Miyazawa S, Jernigan RL. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules. 1985;18:534-552.
Miyazawa S, Jernigan RL. Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins. 1999;34:49-68.
Miller SL. A production of amino acids under possible primitive earth conditions. Science. 1953;117:528-529.
Miller SL, Urey HC. Organic compound synthesis on the primitive earth. Science. 1959;130:245-251.
Crick FH. The origin of the genetic code. J Mol Biol. 1968;38:367-379.
Trifonov EN. Consensus temporal order of amino acids and evolution of the triplet code. Gene. 2000;261:139-151.
Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34:564-574.
Foerstner KU, von Mering C, Hooper SD, Bork P. Environments shape the nucleotide composition of genomes. EMBO Rep. 2005;6:1208-1213.
Singer GA, Hickey DA. Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol Biol Evol. 2000;17:1581-1588.
Peng Z, Uversky VN, Kurgan L. Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disord Proteins. 2016;4:e1262225.