Increasing dietary tryptophan in conjunction with decreasing other large neutral amino acids increases weight gain and feed intake in weaner pigs regardless of experimental infection with enterotoxigenic Escherichia coli.
Amino Acids, Neutral
/ administration & dosage
Animal Feed
/ analysis
Animal Nutritional Physiological Phenomena
Animals
Diet
/ veterinary
Enterotoxigenic Escherichia coli
Escherichia coli Infections
/ veterinary
Infections
/ veterinary
Male
Serotonin
Swine
Swine Diseases
/ microbiology
Tryptophan
/ administration & dosage
Weight Gain
/ drug effects
enterotoxigenic Escherichia coli
large neutral amino acids
serotonin
tryptophan
weaner pigs
weaning
Journal
Journal of animal science
ISSN: 1525-3163
Titre abrégé: J Anim Sci
Pays: United States
ID NLM: 8003002
Informations de publication
Date de publication:
01 Aug 2020
01 Aug 2020
Historique:
received:
16
03
2020
accepted:
04
06
2020
pubmed:
26
6
2020
medline:
15
12
2020
entrez:
26
6
2020
Statut:
ppublish
Résumé
Dietary tryptophan (Trp) is a precursor for serotonin, a neuromediator involved in stress responses. Tryptophan competes with other large neutral amino acids (LNAA: tyrosine, isoleucine, leucine, valine, and phenylalanine) to cross the blood-brain barrier; therefore, the regulation of circulating LNAA can influence Trp availability in the cortex and serotonin biosynthesis. The hypothesis examined in this study was that increased supplementation of dietary Trp and a reduction in LNAA for weaned pigs experimentally infected with enterotoxigenic Escherichia coli (ETEC; F4) will increase Trp availability in plasma and reduce indices of the stress response, which will translate to reduced production losses. At 21 ± 3 d of age (mean ± SEM), 96 male pigs (Large White × Landrace) weighing 6.3 ± 0.98 kg (mean ± SEM) were individually penned and allocated to a 4 × 2 factorial arrangement of treatments, with respective factors being 1) four dietary standardized ileal digestible (SID) Trp and LNAA contents, being HTrpHLNAA (Low Trp-High LNAA; 0.24% SID Trp: 5.4% SID LNAA), HTrpHLNAA (Low Trp-Low LNAA; 0.24% SID Trp: 4.6% SID LNAA), HTrpHLNAA (High Trp-High LNAA; 0.34% SID Trp: 5.4% SID LNAA), and HTrpHLNAA (High Trp-Low LNAA; 0.34% SID Trp: 4.6% SID LNAA), and 2) without/with ETEC infection. Pigs were orally infected with 0.8 mL (3.6 × 109 CFU/mL) ETEC at days 7 and 8 after weaning. Pigs fed diets high in Trp irrespective of the level of LNAA (HTrpHLNAA and HTrpLLNAA) had higher plasma Trp concentrations (P < 0.001) and a Trp:LNAA ratio (P < 0.001) before infection and 6 d after infection. Following infection, noninfected pigs had higher plasma Trp (P = 0.03) and a Trp:LNAA ratio (P = 0.004) compared with pigs infected with ETEC. Plasma cortisol levels after infection were higher in ETEC-infected pigs (P = 0.05) and altering dietary Trp and LNAA concentrations did not influence (P > 0.05) plasma cortisol. Pigs fed diet HTrpLLNAA had higher serum serotonin levels 24 h after infection (P = 0.02) compared with pigs fed diets LTrpLLNAA and HTrpHLNAA. Similarly, pigs fed diet HTrpLLNAA had a higher (P = 0.02) average daily gain during the 3-wk study. Overall, average daily feed intake tended to be higher in pigs fed an HTrpLLNAA diet compared with the other diets (P = 0.08). These results suggest that the increased supplementation of dietary Trp with reduced LNAA increased circulating Trp levels that, in turn, likely caused higher serum serotonin levels, irrespective of infection with ETEC, and improved aspects of post-weaning performance.
Identifiants
pubmed: 32583856
pii: 5862528
doi: 10.1093/jas/skaa190
pmc: PMC7419735
pii:
doi:
Substances chimiques
Amino Acids, Neutral
0
Serotonin
333DO1RDJY
Tryptophan
8DUH1N11BX
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Arch Anim Nutr. 2015;69(1):17-29
pubmed: 25562691
Vet Microbiol. 2006 Jun 15;115(1-3):243-9
pubmed: 16466864
J Med Microbiol. 2004 Apr;53(Pt 4):273-280
pubmed: 15017282
Nat Rev Gastroenterol Hepatol. 2013 Aug;10(8):473-86
pubmed: 23797870
J Nutr. 2012 Aug;142(8):1540-6
pubmed: 22739380
J Clin Invest. 2003 Jun;111(12):1805-12
pubmed: 12813013
J Anim Sci. 2006 Jan;84(1):212-20
pubmed: 16361509
Anim Biotechnol. 2012;23(3):147-55
pubmed: 22870870
Scand J Clin Lab Invest Suppl. 1974;136:1-186
pubmed: 4275489
Adv Exp Med Biol. 1999;467:729-41
pubmed: 10721126
J Anim Sci. 2012 Jul;90(7):2264-75
pubmed: 22287672
Poult Sci. 1998 Mar;77(3):475-80
pubmed: 9521463
J Anim Sci. 2006 Apr;84(4):963-71
pubmed: 16543575
J Anim Sci. 2019 Nov 4;97(11):4503-4508
pubmed: 31545364
J Anim Physiol Anim Nutr (Berl). 2013 Apr;97(2):207-37
pubmed: 22416941
Anim Nutr. 2018 Jun;4(2):187-196
pubmed: 30140758
J Anim Sci. 2009 Sep;87(9):2833-43
pubmed: 19502498
Front Immunol. 2018 Apr 13;9:754
pubmed: 29706967
J Anim Sci. 1996 Nov;74(11):2700-10
pubmed: 8923184
Front Immunol. 2019 Feb 26;10:166
pubmed: 30863393
Neuromolecular Med. 2008;10(4):247-58
pubmed: 18516508
Clin Chem. 1994 Feb;40(2):245-9
pubmed: 8313601
Domest Anim Endocrinol. 1989 Oct;6(4):299-309
pubmed: 2575968
J Physiol Pharmacol. 2011 Dec;62(6):591-9
pubmed: 22314561
Am J Physiol Endocrinol Metab. 2004 Oct;287(4):E622-9
pubmed: 15165996
J Anim Sci. 2007 Dec;85(12):3303-12
pubmed: 17785591
J Anim Sci. 2019 Oct 3;97(10):4282-4292
pubmed: 31410464
J Anim Sci. 1998 Feb;76(2):474-83
pubmed: 9498355
J Anim Sci Biotechnol. 2019 Jul 17;10:56
pubmed: 31346463
Physiol Behav. 2015 May 1;143:151-7
pubmed: 25728243
J Pharmacol Exp Ther. 2008 Apr;325(1):47-55
pubmed: 18192499
J Anim Sci. 2009 Jan;87(1):148-56
pubmed: 18791156
Vet J. 2010 Jul;185(1):23-7
pubmed: 20621712