Suppression of chorismate synthase, which is localized in chloroplasts and peroxisomes, results in abnormal flower development and anthocyanin reduction in petunia.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 07 2020
02 07 2020
Historique:
received:
20
02
2020
accepted:
12
06
2020
entrez:
4
7
2020
pubmed:
4
7
2020
medline:
16
12
2020
Statut:
epublish
Résumé
In plants, the shikimate pathway generally occurs in plastids and leads to the biosynthesis of aromatic amino acids. Chorismate synthase (CS) catalyses the last step of the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, but the role of CS in the metabolism of higher plants has not been reported. In this study, we found that PhCS, which is encoded by a single-copy gene in petunia (Petunia hybrida), contains N-terminal plastidic transit peptides and peroxisomal targeting signals. Green fluorescent protein (GFP) fusion protein assays revealed that PhCS was localized in chloroplasts and, unexpectedly, in peroxisomes. Petunia plants with reduced PhCS activity were generated through virus-induced gene silencing and further characterized. PhCS silencing resulted in reduced CS activity, severe growth retardation, abnormal flower and leaf development and reduced levels of folate and pigments, including chlorophylls, carotenoids and anthocyanins. A widely targeted metabolomics analysis showed that most primary and secondary metabolites were significantly changed in pTRV2-PhCS-treated corollas. Overall, the results revealed a clear connection between primary and specialized metabolism related to the shikimate pathway in petunia.
Identifiants
pubmed: 32616740
doi: 10.1038/s41598-020-67671-6
pii: 10.1038/s41598-020-67671-6
pmc: PMC7331636
doi:
Substances chimiques
Anthocyanins
0
Plant Proteins
0
chorismate synthase
EC 4.2.3.5
Phosphorus-Oxygen Lyases
EC 4.6.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10846Références
Bentley, R. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307–384 (1990).
pubmed: 2279393
Herrmann, K. M. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7, 907–919 (1995).
pubmed: 12242393
pmcid: 160886
Herrmann, K. M. & Weaver, L. M. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 473–503 (1999).
pubmed: 15012217
Mousdale, D. M. & Coggins, J. R. Subcellular localization of the common shikimate—pathway enzymes in Pisum sativum L. Planta 163, 241–249 (1985).
pubmed: 24249346
Jung, E., Zamir, L. O. & Jensen, R. A. Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate. Proc. Natl. Acad. Sci. USA 83, 7231–7235 (1986).
pubmed: 3463961
Mousdale, D. M. & Coggins, J. R. Detection and subcellular localization of a higher plant chorismate synthase. FEBS Lett. 205, 332 (1986).
Siehl, D. L., Singh, B. K. & Conn, E. E. Tissue distribution and subcellular localization of prephenate aminotransferase in leaves of Sorghum bicolor. Plant Physiol. 81, 711–713 (1986).
pubmed: 16664888
pmcid: 1075409
Benesova, M. & Bode, R. Chorismate mutase isoforms from seeds and seedlings of Papaver somniferum. Phytochemistry 31, 2983–2987 (1992).
Schmid, J. & Amrhein, N. Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39, 737–749 (1995).
Zhao, J. & Last, R. L. Immunological characterization and chloroplast localization of the tryptophan biosynthetic enzymes of the flowering plant Arabidopsis thaliana. J. Biol. Chem. 270, 6081–6087 (1995).
pubmed: 7890741
Mustafa, N. R. & Verpoorte, R. Chorismate derived C6C1 compounds in plants. Planta 222, 1–5 (2005).
pubmed: 16049673
Webby, C. J., Baker, H. M., Lott, J. S., Baker, E. N. & Parker, E. J. The structure of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. J. Mol. Biol. 354, 927–939 (2005).
pubmed: 16288916
Della-Cioppa, G. et al. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83, 6873–6877 (1986).
pubmed: 16593759
Schmid, J., Schaller, A., Leibinger, U., Boll, W. & Amrhein, N. The in-vitro synthesized tomato shikimate kinase precursor is enzymatically active and is imported and processed to the mature enzyme by chloroplasts. Plant J. 2, 375–383 (1992).
pubmed: 1338949
Bohlmann, J., Deluca, V., Eilert, U. & Martin, W. Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes. Plant J. 7, 491–501 (1995).
pubmed: 7757119
Kasai, K. et al. Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. Planta 222, 438–447 (2005).
pubmed: 15891897
Ding, L. et al. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. J. Exp. Bot. 58, 2053–2067 (2007).
pubmed: 17463052
Rippert, P., Puyaubert, J., Grisollet, D., Derrier, L. & Matringe, M. Tyrosine and phenylalanine are synthesized within the plastids in arabidopsis. Plant Physiol. 149, 1251–1260 (2009).
pubmed: 19136569
pmcid: 2649395
Colquhoun, T. A. et al. A petunia chorismate mutase specialized for the production of floral volatiles. Plant J. 61, 145–155 (2010).
pubmed: 19811620
Pribat, A. et al. Nonflowering plants possess a unique folate-dependent phenylalanine hydroxylase that is localized in chloroplasts. Plant Cell 22, 3410 (2010).
pubmed: 20959559
pmcid: 2990131
Dal Cin, V. et al. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23, 2738 (2011).
Zhao, J., Weaver, L. M. & Herrmann, K. M. Translocation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase precursor into isolated chloroplasts. Planta 216, 180–186 (2002).
pubmed: 12430029
Ganson, R. J., D’Amato, T. A. & Jensen, R. A. The two-isozyme system of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in Nicotiana sylvestris and other higher plants. Plant Physiol. 82, 203–210 (1986).
pubmed: 16664993
pmcid: 1056090
D’Amato, T. A., Ganson, R. J., Gaines, C. G. & Jensen, R. A. Subcellular localization of chorismate-mutase isoenzymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana sylvestris. Planta 162, 104–108 (1984).
pubmed: 24254043
Eberhard, J. et al. Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant J. 10, 815–821 (1996).
pubmed: 8953244
Schaller, A. et al. Purification and characterization of chorismate synthase from Euglena gracilis: comparison with chorismate synthases of plant and microbial origin. Plant Physiol. 97, 1271–1279 (1991).
pubmed: 16668543
pmcid: 1081158
Gorlach, J., Schmid, J. & Amrhein, N. Differential expression of tomato (Lycopersicon esculentum L.) genes encoding shikimate pathway isoenzymes. II. Chorismate synthase. Plant Mol. Biol. 23, 707–716 (1993).
pubmed: 8251624
Tohge, T., Watanabe, M., Hoefgen, R. & Fernie, A. R. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 4, 62 (2013).
pubmed: 23543266
pmcid: 3608921
Tan, Y. et al. PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the Petunia. Mol. Plant 7, 1384–1387 (2014).
pubmed: 24618881
Yang, W. et al. Functional characterization of PhGR and PhGRL1 during flower senescence in the Petunia. Plant Cell Rep. 34, 1561–1568 (2015).
pubmed: 25987314
Liu, J. et al. Identification and expression analysis of ERF transcription factor genes in Petunia during flower senescence and in response to hormone treatments. J. Exp. Bot. 62, 825–840 (2011).
pubmed: 20974735
Tzfira, T. et al. PSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503–516 (2005).
pubmed: 15821977
Kohler, R. H., Zipfel, W. R., Webb, W. W. & Hanson, M. R. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 11, 613–621 (1997).
pubmed: 9107047
Luo, B. & Nakata, P. A. A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. Plant Sci. 188–189, 19–24 (2012).
pubmed: 22525240
Saint-Jore-Dupas, C. et al. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18, 3182–3200 (2006).
pubmed: 17138701
pmcid: 1693952
Pracharoenwattana, I., Cornah, J. E. & Smith, S. M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17, 2037–2048 (2005).
pubmed: 15923350
pmcid: 1167550
Locatelli, F., Vannini, C., Magnani, E., Coraggio, I. & Bracale, M. Efficiency of transient transformation in tobacco protoplasts is independent of plasmid amount. Plant Cell Rep. 21, 865–871 (2003).
pubmed: 12789504
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
pubmed: 11328886
pmcid: 55695
Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).
pubmed: 19246619
Mallona, I., Lischewski, S., Weiss, J., Hause, B. & Egea-Cortines, M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 10, 4 (2010).
pubmed: 20056000
pmcid: 2827423
Spitzer-Rimon, B. et al. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in Petunia. Plant Cell 24, 5089–5105 (2012).
pubmed: 23275577
pmcid: 3556977
Sambrook, J., Maniatis, T. & Fritsch, E. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratories, Cold Spring Harbor, 1989).
Yang, W. et al. PhCESA3 silencing inhibits elongation and stimulates radial expansion in Petunia. Sci Rep. 7, 41471 (2017).
pubmed: 28150693
pmcid: 5288708
Mehrtens, F., Kranz, H., Bednarek, P. & Weisshaar, B. The arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138, 1083–1096 (2005).
pubmed: 15923334
pmcid: 1150422
Trinh, N. A., Naing, A. H., Arun, M., Lim, S. & Kim, C. K. Sucrose-induced anthocyanin accumulation in vegetative tissue of petunia plants requires anthocyanin regulatory transcription factors. Plant Sci. 252, 144–150 (2016).
Li, Q. & Song, J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol. 19, 388 (2019).
pubmed: 31492100
pmcid: 6729093
Chen, W. et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769–1780 (2013).
pubmed: 23702596
Fraga, C. G., Clowers, B. H., Moore, R. J. & Zink, E. M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography? Mass spectrometry, XCMS, and chemometrics. Anal. Chem. 82, 4165–4173 (2010).
pubmed: 20405949
Keegstra, K., Olsen, L. J. & Theg, S. M. Chloroplastic precursors and their transport across the envelope membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 471–501 (1989).
Gavel, Y. & Heijne, G. V. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261, 455–458 (1990).
pubmed: 2311769
Ando, T. et al. Floral anthocyanins in wild taxa of Petunia (Solanaceae). Biochem. Syst. Ecol. 27, 623–650 (1999).
Waller, J. C. et al. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol. Plant. 3, 66–77 (2010).
pubmed: 20085893
Loizeau, K. et al. Regulation of one-carbon metabolism in arabidopsis: the N-terminal regulatory domain of cystathionine gamma-synthase is cleaved in response to folate starvation. Plant Physiol. 145, 491–503 (2007).
pubmed: 17720756
pmcid: 2048731
Zhang, G. F., Storozhenko, S., Van Der Straeten, D. & Lambert, W. E. Investigation of the extraction behavior of the main monoglutamate folates from spinach by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 1078, 59–66 (2005).
pubmed: 16007982
Shaipulah, N. F. et al. CCoAOMT down-regulation activates anthocyanin biosynthesis in Petunia. Plant Physiol. 170, 717–731 (2016).
pubmed: 26620524
Khera, H. K., Singh, S. K., Mir, R., Bharadwaj, V. & Singh, S. A HR-MS based method for the determination of chorismate synthase activity. Protein Pept. Lett. 24, 229–234 (2017).
pubmed: 28017143
Henstrand, J. M., Schmid, J. & Amrhein, N. Only the mature form of the plastidic chorismate synthase is enzymatically active. Plant Physiol. 108, 1127–1132 (1995).
pubmed: 12228531
pmcid: 157465
Schaller, A., Schmid, J., Leibinger, U. & Amrhein, N. Molecular cloning and analysis of a cDNA coding for chorismate synthase from the higher plant Corydalis sempervirens Pers. J. Biol. Chem. 266, 21434–21438 (1991).
pubmed: 1718979
Zybailov, B. et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3, e1994 (2008).
pubmed: 18431481
pmcid: 2291561
Jones, J. D., Henstrand, J. M., Handa, A. K., Herrmann, K. M. & Weller, S. C. Impaired wound induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and altered stem development in transgenic potato plants expressing a DAHP synthase antisense construct. Plant Physiol. (Rockville) 108, 1413–1421 (1995).
Lewis, N. G. & Yamamoto, E. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 455–496 (1990).
pubmed: 11543592
Block, M. A., Tewari, A. K., Albrieux, C., Marechal, E. & Joyard, J. The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur. J. Biochem. 269, 240–248 (2002).
pubmed: 11784318
Alawady, A., Reski, R., Yaronskaya, E. & Grimm, B. Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant Mol. Biol. 57, 679–691 (2005).
pubmed: 15988563
Vance, C. P., Kirk, T. K. & Sherwood, R. T. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18, 259–288 (1980).
Nicholson, R. L. & Hammerschmidt, R. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30, 369–389 (1990).
Moerschbacher, B. M., Noll, U., Gorrichon, L. & Reisener, H. J. Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol. 93, 465–470 (1990).
pubmed: 16667489
pmcid: 1062535
Bostock, R. M. & Stermer, B. A. Perspectives on wound healing in resistance to pathogens. Annu. Rev. Phytopathol. 27, 343–371 (1989).
Duan, C. et al. Constitutive expression of GmF6′H1 from soybean improves salt tolerance in transgenic arabidopsis. Plant Physiol. Biochem. 141, 446–455 (2019).
pubmed: 31247427
Liu, S., Zainuddin, I. M., Vanderschuren, H., Doughty, J. & Beeching, J. R. RNAi inhibition of feruloyl CoA 6′-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots. Plant Mol. Biol. 94, 185–195 (2017).
pubmed: 28315989
pmcid: 5437147
Matsuura, H. N., Rau, M. R. & Fett-Neto, A. G. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications. Biotechnol. Lett. 36, 191–200 (2014).
pubmed: 24062135
Liu, B., Zhou, Y., Lan, W., Zhou, Q. & Liu, G. LlDREB1G, a novel DREB subfamily gene from Lilium longiflorum, can enhance transgenic arabidopsis tolerance to multiple abiotic stresses. Plant Cell Tissue Organ Cult https://doi.org/10.1007/s11240-019-01644-0 (2019).
doi: 10.1007/s11240-019-01644-0
Ramakrishna, A. & Ravishankar, G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6, 1720–1731 (2011).
pubmed: 22041989
pmcid: 3329344
Takshak, S. & Agrawal, S. B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B 193, 51–88 (2019).
pubmed: 30818154
Ding, L., Li, M., Wang, W., Cao, J. & Tan, X. Advances in plant GDSL lipases: from sequences to functional mechanisms. Acta Physiol. Plant. 41, 151 (2019).
Saddhe, A., Malvankar, M., Karle, S. & Kumar, K. Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants. Environ. Exp. Bot. https://doi.org/10.1016/j.envexpbot.2018.11.010 (2018).
doi: 10.1016/j.envexpbot.2018.11.010
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223 (2002).
pubmed: 11960739
Fatland, B. L., Nikolau, B. J. & Wurtele, E. S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in arabidopsis. Plant Cell 17, 182–203 (2005).
pubmed: 15608338
pmcid: 544498
Mata-Perez, C. et al. Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in arabidopsis. Plant Physiol. 170, 686–701 (2016).
pubmed: 26628746