Exploring bacteria diversity in commercialized table olive biofilms by metataxonomic and compositional data analysis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 07 2020
Historique:
received: 28 04 2020
accepted: 23 06 2020
entrez: 11 7 2020
pubmed: 11 7 2020
medline: 22 12 2020
Statut: epublish

Résumé

In this work, a total of 72 samples of non-thermally treated commercial table olives were obtained from different markets of the world. Then, prokaryotic diversity in olive biofilms was investigated by metataxonomic analysis. A total of 660 different OTUs were obtained, belonging to Archaea (2.12%) and Bacteria domains (97.88%). From these, 41 OTUs with a proportion of sequences ≥ 0.01% were studied by compositional data analysis. Only two genera were found in all samples, Lactobacillus, which was the predominant bacteria in the biofilm consortium (median 54.99%), and Pediococcus (26.09%). Celerinatantimonas, Leuconostoc, Alkalibacterium, Pseudomonas, Marinilactibacillus, Weissella, and the family Enterobacteriaceae were also present in at least 80% of samples. Regarding foodborne pathogens, only Enterobacteriaceae, Vibrio, and Staphylococcus were detected in at least 91.66%, 75.00%, and 54.10% of samples, respectively, but their median values were always below 0.15%. Compositional data analysis allowed discriminating between lye treated and natural olive samples, as well as between olives packaged in glass, PET and plastic bags. Leuconostoc, Celerinatantimonas, and Alkalibacterium were the bacteria genera with a higher discriminant power among samples. These results expand our knowledge of the bacteria diversity in olive biofilms, providing information about the sanitary and hygienic status of this ready-to-eat fermented vegetable.

Identifiants

pubmed: 32647238
doi: 10.1038/s41598-020-68305-7
pii: 10.1038/s41598-020-68305-7
pmc: PMC7347591
doi:

Substances chimiques

DNA, Archaeal 0
DNA, Bacterial 0
RNA, Ribosomal, 16S 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11381

Références

International Olive Oil Council. World Table Olive Figures (2020). Available online: https://www.internationaloliveoil.org .
Garrido-Fernández, A. et al. Table Olives Production and Processing (Chapman & Hall, London, 1997).
doi: 10.1007/978-1-4899-4683-6
Medina-Pradas, E. & Arroyo-López, F. N. Presence of toxic microbial metabolites in table olives. Front. Microbiol. 6, 873 (2015).
doi: 10.3389/fmicb.2015.00873
Marsilio, V. & De Angelis, M. Indagine su alcuni parametri di qulita` de campioni di olive da tavola del commercio. Inustrie Alimentari 32, 1093–1095 (1993).
López-López, A. et al. Physicochemical and microbiological profile of packed table olives. J. Food Prot. 67, 2320–2325 (2004).
doi: 10.4315/0362-028X-67.10.2320
Pereira, A. P. et al. Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food Chem. Toxicol. 46, 2895–2902 (2008).
doi: 10.1016/j.fct.2008.05.033
Botta, C. & Cocolin, L. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches. Front. Microbiol. 6, 3 (2012).
Benítez-Cabello, A. et al. The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives. Food Microbiol. 91, 103497 (2020).
pubmed: 32539965
De Castro, A. et al. Microbiota and metabolite profiling of spoiled Spanish-style green table olives. Metabolites. 8(4), 73 (2018).
doi: 10.3390/metabo8040073
Medina, E. et al. Microbial ecology along the processing of Spanish olives darkened by oxidation. Food Control 86, 35–41 (2018).
doi: 10.1016/j.foodcont.2017.10.035
Rodríguez-Gómez, F. et al. Microbiological and physicochemical changes in natural green heat-shocked Aloreña de Málaga table olives. Front. Microbiol. 8, 2209 (2017).
doi: 10.3389/fmicb.2017.02209
Cocolin, L. et al. NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PLoS ONE 8(7), e69074 (2013).
doi: 10.1371/journal.pone.0069074
De Angelis, M. et al. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 52, 18 (2015).
doi: 10.1016/j.fm.2015.06.002
Arroyo-López, F. N. et al. Enhancement of the knowledge on fungal communities in directly brined Aloreña de Málaga Green olive fermentations by metabarcoding analysis. PLoS ONE 11, 9 (2016).
doi: 10.1371/journal.pone.0163135
Gloor, G. B. et al. Microbioma data sets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
doi: 10.3389/fmicb.2017.02224
Greenacre, M. La Práctica del Analisis de Correspondencias. Fundación BBVA, Barcelona, Spain, 310 pp (2008).
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B. 44(2), 139–160 (1982).
Bowen, B. W. & Karl, S. A. Population genetics and phylogeography of sea turtles. Mol. Ecol. 16(23), 4886–4907 (2007).
doi: 10.1111/j.1365-294X.2007.03542.x
Pierotti, M. E. R. & Martín-Fernández, J. A. Compositional analysis in behavioural and evolutionary ecology. CoDA 218, 234 (2011).
Lammer, H. et al. Compositional data analysis in planetology: the surfaces of Mars and Mercury. In Compositional Data Analysis: Theory and Applications (eds Pawlowsky, V. & Buccianti, A.) 267–281 (John Wiley & Sons, Chichester, 2011).
doi: 10.1002/9781119976462.ch19
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1), e1–e1 (2013).
doi: 10.1093/nar/gks808
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6), 863–864 (2011).
doi: 10.1093/bioinformatics/btr026
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).
doi: 10.1093/bioinformatics/btr507
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).
doi: 10.1093/bioinformatics/btq461
Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35(21), 7188–7196 (2007).
doi: 10.1093/nar/gkm864
Nemadić, O. & Greenacre, M. Correspondence analysis in R, with two-and three dimensional graphics: the ca package. J. Stat. Softw. 20(3), 1 (2007).
Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335 (2016).
doi: 10.1016/j.annepidem.2016.03.002
Pawlowsky-Glahn, V. et al. Modeling and analysis of compositional data. JWS, http:/ www.whiley.com/go/glahn/practical (2015).
Gabriel, K. R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453–467 (1971).
doi: 10.1093/biomet/58.3.453
Greenacre, M. Biplots in practice. Fundación BBVA, Barcelona, Spain. 237 pp (2010).
Aitchison, J. & Greenacre, M. Biplots of compositional data. Appl. Statist. 51(4), 375–392 (2002).
Comas-Cufí, M. & Thió-Henestrosa, S. CoDaPack Deperment of Computer Science and Applied Mathematics (University of Girona, Girone (Spain), 2018).
Van den Boogaart, K. G. & Tolosana-Delgado, R. Analyzing compositional data with R (Springer-Verlag, Berlin, 2013).
doi: 10.1007/978-3-642-36809-7
Filzmoser, P. et al. Applied Compositional Data Analysis, with worked examples (Springer Nature Switzerland AG, Cham, 2018).
doi: 10.1007/978-3-319-96422-5
International Olive Oil Council. Trade standard applying to table olives. Madrid. Spain (2004).
Valero, A. et al. Influence of acid adaptation on the probability of germination of Clostridium sporogenes spores against pH NaCl and time. Food 9, 127 (2020).
doi: 10.3390/foods9020127
Medina, E. et al. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 236, 47–55 (2016).
doi: 10.1016/j.ijfoodmicro.2016.07.014
Ruiz-Bellido, M. A. et al. A Probabilistic decision-making scoring system for quality and safety management in Aloreña de Málaga table olive processing. Front. Microbiol. 8, 2326 (2017).
doi: 10.3389/fmicb.2017.02326
Benítez-Cabello, A. et al. RT-PCR–DGGE analysis to elucidate the dominant bacterial species of industrial spanish-style green table olive fermentations. Front. Microbiol. 7, 1291 (2016).
doi: 10.3389/fmicb.2016.01291
Lucena-Padrós, H. et al. Microbial diversity and dynamics of Spanish-style green table-olive techniques. Int. J. Food Microbiol. 42, 154–165 (2014).
doi: 10.1016/j.fm.2014.03.020
Abriouel, H. et al. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Int. J. Food Microbiol. 144, 487–496 (2011).
doi: 10.1016/j.ijfoodmicro.2010.11.006
Benítez-Cabello, A. et al. Metataxonomic analysis of the bacterial diversity in table olive dressing components. Food Control 105, 190–197 (2019).
doi: 10.1016/j.foodcont.2019.05.036
Louca, S. et al. A census-based estimate of earth’s bacterial and archeal diversity. PLoS Biol. 7, e00999-e1016 (2019).
Hurtado, A. et al. Lactic acid bacteria from fermented table olives. Food. Microbiol. 31, 1–8 (2012).
doi: 10.1016/j.fm.2012.01.006
Benítez-Cabello, A. et al. Probiotic properties of Lactobacillus strains isolated from table olive biofilms. Probiotic Antimicrobial Prot. In press. (2020).

Auteurs

Antonio Benítez-Cabello (A)

Food Technology Department, Instituto de La Grasa (CSIC), Crta Utrera km 1, Campus Universitario Pablo de Olavide. Building 46, 41013, Seville, Spain.

Verónica Romero-Gil (V)

Technological Applications for Improvement of Quality and Safety in Foods, Carretera de Marbella nº22. Planta-1, 29108, Guaro, Málaga, Spain.

Eduardo Medina-Pradas (E)

Food Technology Department, Instituto de La Grasa (CSIC), Crta Utrera km 1, Campus Universitario Pablo de Olavide. Building 46, 41013, Seville, Spain.

Antonio Garrido-Fernández (A)

Food Technology Department, Instituto de La Grasa (CSIC), Crta Utrera km 1, Campus Universitario Pablo de Olavide. Building 46, 41013, Seville, Spain.

Francisco Noé Arroyo-López (FN)

Food Technology Department, Instituto de La Grasa (CSIC), Crta Utrera km 1, Campus Universitario Pablo de Olavide. Building 46, 41013, Seville, Spain. fnoe@ig.csic.es.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH