Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung.
Animals
Carcinogens
/ metabolism
Cell Proliferation
Chromatography, High Pressure Liquid
CpG Islands
Cytosine
/ chemistry
DNA
/ metabolism
DNA Methylation
Epigenesis, Genetic
Female
High-Throughput Nucleotide Sequencing
Histones
/ chemistry
Inflammation
Inhalation Exposure
Lung
/ drug effects
Lung Neoplasms
/ genetics
Mice
Mice, Inbred Strains
Nitrosamines
/ metabolism
Smoke
/ adverse effects
Smoking
Sulfites
/ pharmacology
Nicotiana
Tobacco Products
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 07 2020
09 07 2020
Historique:
received:
16
01
2020
accepted:
09
06
2020
entrez:
11
7
2020
pubmed:
11
7
2020
medline:
26
1
2021
Statut:
epublish
Résumé
Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development.
Identifiants
pubmed: 32647312
doi: 10.1038/s41598-020-67502-8
pii: 10.1038/s41598-020-67502-8
pmc: PMC7347915
doi:
Substances chimiques
Carcinogens
0
Histones
0
Nitrosamines
0
Smoke
0
Sulfites
0
Cytosine
8J337D1HZY
DNA
9007-49-2
hydrogen sulfite
OJ9787WBLU
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
11290Subventions
Organisme : NCI NIH HHS
ID : R50 CA211249
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA138338
Pays : United States
Références
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30. https://doi.org/10.3322/caac.21442 (2018).
doi: 10.3322/caac.21442
pubmed: 29313949
Ronai, Z. A., Gradia, S., Peterson, L. A. & Hecht, S. S. G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 14, 2419–2422 (1993).
doi: 10.1093/carcin/14.11.2419
Stepanov, I. et al. Carcinogenic tobacco-specific N-nitrosamines in US cigarettes: three decades of remarkable neglect by the tobacco industry. Tob. Control 21, 44–48. https://doi.org/10.1136/tc.2010.042192 (2012).
doi: 10.1136/tc.2010.042192
pubmed: 21602537
Korsgren, M. et al. Inhalation of LPS induces inflammatory airway responses mimicking characteristics of chronic obstructive pulmonary disease. Clin. Physiol. Funct. Imaging 32, 71–79 (2012).
doi: 10.1111/j.1475-097X.2011.01058.x
Adcock, I. M., Tsaprouni, L., Bhavsar, P. & Ito, K. Epigenetic regulation of airway inflammation. Curr. Opin. Immunol. 19, 694–700. https://doi.org/10.1016/j.coi.2007.07.016 (2007).
doi: 10.1016/j.coi.2007.07.016
pubmed: 17720468
Hasday, J. D., Bascom, R., Costa, J. J., Fitzgerald, T. & Dubin, W. Bacterial endotoxin is an active component of cigarette smoke. Chest 115, 829–835 (1999).
doi: 10.1378/chest.115.3.829
Melkamu, T., Qian, X., Upadhyaya, P., O’Sullivan, M. G. & Kassie, F. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. Vet. Pathol. 50, 895–902 (2013).
doi: 10.1177/0300985813476061
La Maestra, S. et al. Modulation by aspirin and naproxen of nucleotide alterations and tumors in the lung of mice exposed to environmental cigarette smoke since birth. Carcinogenesis 36, 1531–1538. https://doi.org/10.1093/carcin/bgv149 (2015).
doi: 10.1093/carcin/bgv149
pubmed: 26464196
pmcid: 4675832
Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 27–36. https://doi.org/10.1093/carcin/bgp220 (2010).
doi: 10.1093/carcin/bgp220
pubmed: 19752007
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).
doi: 10.1038/nrg1655
D’Agostini, F. et al. Modulation by phenethyl isothiocyanate and budesonide of molecular and histopathologic alterations induced by environmental cigarette smoke in mice. Cancer Prev. Res. (Phila) 2, 546–556. https://doi.org/10.1158/1940-6207.CAPR-08-0235 (2009).
doi: 10.1158/1940-6207.CAPR-08-0235
Seiler, C. L. et al. Epigenetic changes in alveolar type II lung cells of A/J mice following intranasal treatment with lipopolysaccharide. Chem. Res. Toxicol. 32, 831–839. https://doi.org/10.1021/acs.chemrestox.9b00015 (2019).
doi: 10.1021/acs.chemrestox.9b00015
pubmed: 30942577
Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5, e15367 (2010).
doi: 10.1371/journal.pone.0015367
Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937. https://doi.org/10.1126/science.1220671 (2012).
doi: 10.1126/science.1220671
pubmed: 22539555
Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5, e8888 (2010).
doi: 10.1371/journal.pone.0008888
Yong, W. S., Hsu, F. M. & Chen, P. Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 9, 26. https://doi.org/10.1186/s13072-016-0075-3 (2016).
doi: 10.1186/s13072-016-0075-3
pubmed: 27358654
pmcid: 4926291
Song, Q. et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE 8, e81148. https://doi.org/10.1371/journal.pone.0081148 (2013).
doi: 10.1371/journal.pone.0081148
pubmed: 24324667
pmcid: 3855694
Qu, J., Zhou, M., Song, Q., Hong, E. E. & Smith, A. D. MLML: consistent simultaneous estimates of DNA methylation and hydroxymethylation. Bioinformatics 29, 2645–2646. https://doi.org/10.1093/bioinformatics/btt459 (2013).
doi: 10.1093/bioinformatics/btt459
pubmed: 23969133
pmcid: 3789553
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383. https://doi.org/10.1093/bioinformatics/btv145 (2015).
doi: 10.1093/bioinformatics/btv145
pubmed: 25765347
Savic, D. et al. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med. 8, 74. https://doi.org/10.1186/s13073-016-0328-6 (2016).
doi: 10.1186/s13073-016-0328-6
pubmed: 27401066
pmcid: 4940857
Liang, Y., Wang, S. & Zhang, Y. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple-negative breast cancer epithelial cells through the RhoA/Rac1 pathway. Oncol. Lett. 16, 3481–3488. https://doi.org/10.3892/ol.2018.9077 (2018).
doi: 10.3892/ol.2018.9077
pubmed: 30127952
pmcid: 6096110
Ly, N. P. et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc. Natl. Acad. Sci. USA 102, 14729–14734. https://doi.org/10.1073/pnas.0506233102 (2005).
doi: 10.1073/pnas.0506233102
pubmed: 16203981
Tomczak, M. F. et al. Inhibition of Helicobacter hepaticus-induced colitis by IL-10 requires the p50/p105 subunit of NF-kappa B. J. Immunol. 177, 7332–7339. https://doi.org/10.4049/jimmunol.177.10.7332 (2006).
doi: 10.4049/jimmunol.177.10.7332
pubmed: 17082652
Williams, D. R., Shifley, E. T., Braunreiter, K. M. & Cole, S. E. Disruption of somitogenesis by a novel dominant allele of Lfng suggests important roles for protein processing and secretion. Development 143, 822–830. https://doi.org/10.1242/dev.128538 (2016).
doi: 10.1242/dev.128538
pubmed: 26811377
Chignalia, A. Z. et al. p120-catenin expressed in alveolar type II cells is essential for the regulation of lung innate immune response. Am. J. Pathol. 185, 1251–1263. https://doi.org/10.1016/j.ajpath.2015.01.022 (2015).
doi: 10.1016/j.ajpath.2015.01.022
pubmed: 25773174
pmcid: 4419206
Toyooka, K. O. et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res. 61, 4556–4560 (2001).
pubmed: 11389090
Bojesen, S. E., Timpson, N., Relton, C., Davey Smith, G. & Nordestgaard, B. G. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax 72, 646–653. https://doi.org/10.1136/thoraxjnl-2016-20878 (2017).
doi: 10.1136/thoraxjnl-2016-20878
pubmed: 28100713
pmcid: 5520281
Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).
doi: 10.1038/onc.2012.67
Mashkova, T. D. et al. Transcription TIMP3, DAPk1 and AKR1B10 genes in squamous cell lung cancer. Mol. Biol. (Mosk) 40, 1047–1054 (2006).
doi: 10.1134/S0026893306060148
Zhang, H. T. et al. Effect of DAPK1 gene transfection on high-metastasis non-small lung cancer cell PGCl3. Ai Zheng 23, 497–501 (2004).
pubmed: 15142442
Brock, M. V. et al. DNA methylation markers and early recurrence in stage I lung cancer. N. Engl. J. Med. 358, 1118–1128. https://doi.org/10.1056/NEJMoa0706550 (2008).
doi: 10.1056/NEJMoa0706550
pubmed: 18337602
Lin, Y. L., Xie, P. G. & Ma, J. G. Aberrant methylation of CDH13 is a potential biomarker for predicting the recurrence and progression of non-muscle-invasive bladder cancer. Med. Sci. Monit. 20, 1572–1577 (2014).
doi: 10.12659/MSM.892130
Chen, H. et al. Aberrant methylation of RASGRF2 and RASSF1A in human non-small cell lung cancer. Oncol. Rep. 15, 1281–1285 (2006).
pubmed: 16596198
Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).
doi: 10.1126/science.1210597
Zhou, T., Chung, Y. H., Chen, J. & Chen, Y. Site-specific identification of lysine acetylation stoichiometries in mammalian cells. J. Proteome Res. 15, 1103–1113. https://doi.org/10.1021/acs.jproteome.5b01097 (2016).
doi: 10.1021/acs.jproteome.5b01097
pubmed: 26839187
van Leeuwen, F. & van Steensel, B. Histone modifications: from genome-wide maps to functional insights. Genome Biol. 6, 113. https://doi.org/10.1186/gb-2005-6-6-113 (2005).
doi: 10.1186/gb-2005-6-6-113
pubmed: 15960810
pmcid: 1175962
Drilon, A. et al. A prospective study of tumor suppressor gene methylation as a prognostic biomarker in surgically resected stage I to IIIA non-small-cell lung cancers. J. Thorac. Oncol. 9, 1272–1277. https://doi.org/10.1097/JTO.0000000000000256 (2014).
doi: 10.1097/JTO.0000000000000256
pubmed: 25122424
pmcid: 4133740
Tantoh, D. M. et al. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM2.5 concentrations. Clin. Epigenetics 11, 69. https://doi.org/10.1186/s13148-019-0662-9 (2019).
doi: 10.1186/s13148-019-0662-9
pubmed: 31060609
pmcid: 6503351
Yokoyama, S. et al. TET1-mediated DNA hypomethylation regulates the expression of MUC4 in lung cancer. Genes Cancer 8, 517–527. https://doi.org/10.18632/genesandcancer.139 (2017).
doi: 10.18632/genesandcancer.139
pubmed: 28680536
pmcid: 5489649
Shiels, M. S. et al. Circulating inflammation markers and prospective risk for lung cancer. J. Natl. Cancer Inst. 105, 1871–1880 (2013).
doi: 10.1093/jnci/djt309
Chiba, T., Marusawa, H. & Ushijima, T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143, 550–563 (2012).
doi: 10.1053/j.gastro.2012.07.009
Skillrud, D. M. COPD: causes, treatment, and risk for lung cancer. Compr. Ther. 12, 13–16 (1986).
pubmed: 2878761
Izzotti, A. et al. Early and late effects of aspirin and naproxen on microRNAs in the lung and blood of mice, either unexposed or exposed to cigarette smoke. Oncotarget 8, 85716–85748 (2017).
doi: 10.18632/oncotarget.20464
Vernooy, J. H., Dentener, M. A., van Suylen, R. J., Buurman, W. A. & Wouters, E. F. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol. 26, 152–159. https://doi.org/10.1165/ajrcmb.26.1.4652 (2002).
doi: 10.1165/ajrcmb.26.1.4652
pubmed: 11751215
Iskandar, A. R. et al. beta-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev. Res. (Phila) 6, 309–320. https://doi.org/10.1158/1940-6207.CAPR-12-0368 (2013).
doi: 10.1158/1940-6207.CAPR-12-0368
Kontic, M. et al. Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathologic characteristics of primary non-small-cell lung carcinoma. Clin. Lung Cancer 13, 297–303 (2012).
doi: 10.1016/j.cllc.2011.11.003
Tsou, J. A. et al. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol. Cancer 6, 70. https://doi.org/10.1186/1476-4598-6-70 (2007).
doi: 10.1186/1476-4598-6-70
pubmed: 17967182
pmcid: 2206053
Belinsky, S. A. et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 62, 2370–2377 (2002).
pubmed: 11956099
Buckingham, L. et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. Int. J. Cancer 126, 1630–1639 (2010).
pubmed: 19795445
Shenker, N. S. et al. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology 24, 712–716 (2013).
doi: 10.1097/EDE.0b013e31829d5cb3
Philibert, R. A., Beach, S. R. & Brody, G. H. Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics 7, 1331–1338 (2012).
doi: 10.4161/epi.22520
Tang, X. et al. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J. Natl. Cancer Inst. 92, 1511–1516 (2000).
doi: 10.1093/jnci/92.18.1511
Su, D. et al. Distinct epigenetic effects of tobacco smoking in whole blood and among leukocyte subtypes. PLoS ONE 11, e0166486. https://doi.org/10.1371/journal.pone.0166486 (2016).
doi: 10.1371/journal.pone.0166486
pubmed: 27935972
pmcid: 5147832
Wan, M. et al. Identification of smoking-associated differentially methylated regions using reduced representation bisulfite sequencing and cell type-specific enhancer activation and gene expression. Environ. Health Perspect. 126, 047015. https://doi.org/10.1289/EHP2395 (2018).
doi: 10.1289/EHP2395
pubmed: 29706059
pmcid: 6071796
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
doi: 10.1093/bioinformatics/btr167