Enzymatic reaction mechanism of cis-aconitate decarboxylase based on the crystal structure of IRG1 from Bacillus subtilis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 07 2020
Historique:
received: 05 05 2020
accepted: 22 06 2020
entrez: 11 7 2020
pubmed: 11 7 2020
medline: 1 1 2021
Statut: epublish

Résumé

Itaconate, which is formed by decarboxylation of cis-aconitate-an intermediate metabolite in the tricarboxylic acid cycle-has been used as a building block in polymer synthesis and is an important chemical in several biomedical and industrial applications. Itaconate is an immunometabolite with antibacterial, antiviral, immunoregulatory, and tumor-promoting activities. Recent focus has been on the role of itaconate in the field of immunology, with immune-responsive gene 1 (IRG1) being identified as the cis-aconitate decarboxylase responsible for itaconate production. We solved the structure of IRG1 from Bacillus subtilis (bsIRG1) and showed that IRG1 adopts either a closed or an open conformation; bsIRG1 was in the open form. A1 and A2 loops around the active site are flexible and can control the formation of the open and closed forms of IRG1. An in silico docking simulation showed that only the open form of IRG1 can accommodate the substrate. The most energetically favorable position of cis-aconitate in the active site of bsIRG1 involved the localization of C2 and C5 of cis-aconitate into the H102 region and H151 region of bsIRG1, respectively. Based on the structural study of bsIRG1, compared with IDS epimerase, and in silico docking simulation, we proposed two tentative enzymatic reaction mechanisms of IRG1, a two-base model and a one-base model.

Identifiants

pubmed: 32647315
doi: 10.1038/s41598-020-68419-y
pii: 10.1038/s41598-020-68419-y
pmc: PMC7347537
doi:

Substances chimiques

Bacterial Proteins 0
Aconitic Acid 93371T1BXP
Carboxy-Lyases EC 4.1.1.-
aconitate decarboxylase EC 4.1.1.6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11305

Références

Tweeddale, H., Notley-McRobb, L. & Ferenci, T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J. Bacteriol. 180, 5109–5116 (1998).
doi: 10.1128/JB.180.19.5109-5116.1998
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
doi: 10.1038/35036627
Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. Biol. Sci. 268, 1803–1810 (2001).
doi: 10.1098/rspb.2001.1711
Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1, 16–33 (2019).
doi: 10.1038/s42255-018-0014-7
Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).
doi: 10.1016/j.bioorg.2012.03.001
O’Neill, L. A. J. & Artyomov, M. N. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).
doi: 10.1038/s41577-019-0128-5
Sakai, A., Kusumoto, A., Kiso, Y. & Furuya, E. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 20, 997–1002 (2004).
doi: 10.1016/j.nut.2004.08.007
McFadden, B. A. & Purohit, S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J. Bacteriol. 131, 136–144 (1977).
doi: 10.1128/JB.131.1.136-144.1977
Khan, F. R. & Mcfadden, B. A. Enzyme profiles in seedling development and the effect of itaconate, an isocitrate lyase-directed reagent. Plant Physiol. 64, 228–231 (1979).
doi: 10.1104/pp.64.2.228
Li, A., Pfelzer, N., Zuijderwijk, R. & Punt, P. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. Bmc Biotechnol. https://doi.org/10.1186/1472-6750-12-57 (2012).
doi: 10.1186/1472-6750-12-57 pubmed: 23046873 pmcid: 3505732
Kurian, J. V. A new polymer platform for the future—Sorona (R) from corn derived 1,3-propanediol. J. Polym. Environ. 13, 159–167 (2005).
doi: 10.1007/s10924-005-2947-7
Cordes, T., Michelucci, A. & Hiller, K. Itaconic acid: The surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu. Rev. Nutr. 35(35), 451–473 (2015).
doi: 10.1146/annurev-nutr-071714-034243
Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).
doi: 10.1016/j.cmet.2016.06.004
Dominguez-Andres, J. et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 29, 211 (2019).
doi: 10.1016/j.cmet.2018.09.003
Strelko, C. L. et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–16389 (2011).
doi: 10.1021/ja2070889
Dwiarti, L., Yamane, K., Yamatani, H., Kahar, P. & Okabe, M. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 94, 29–33 (2002).
doi: 10.1016/S1389-1723(02)80112-8
Kanamasa, S., Dwiarti, L., Okabe, M. & Park, E. Y. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 80, 223–229 (2008).
doi: 10.1007/s00253-008-1523-1
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113 (2018).
doi: 10.1038/nature25986
Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U.S.A. 110, 7820–7825 (2013).
doi: 10.1073/pnas.1218599110
Basler, T., Jeckstadt, S., Valentin-Weigand, P. & Goethe, R. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J. Leukoc. Biol. 79, 628–638 (2006).
doi: 10.1189/jlb.0905520
Daniels, B. P. et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64 (2019).
doi: 10.1016/j.immuni.2018.11.017
Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M-tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).
doi: 10.1084/jem.20180118
Pessler, F. et al. Identification of novel monosodium urate crystal regulated mRNAs by transcript profiling of dissected murine air pouch membranes. Arthr. Res. Therapy 10, R64 (2008).
doi: 10.1186/ar2435
Michopoulos, F. et al. Targeted metabolic profiling of the Tg197 mouse model reveals itaconic acid as a marker of rheumatoid arthritis. J. Proteome Res. 15, 4579–4590 (2016).
doi: 10.1021/acs.jproteome.6b00654
Weiss, J. M. et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Investig. 128, 3794–3805 (2018).
doi: 10.1172/JCI99169
Lohkamp, B., Bauerle, B., Rieger, P. G. & Schneider, G. Three-dimensional structure of iminodisuccinate epimerase defines the fold of the MmgE/PrpD protein family. J. Mol. Biol. 362, 555–566 (2006).
doi: 10.1016/j.jmb.2006.07.051
Adams, P. D. et al. PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Cokesa, Z., Knackmuss, H. J. & Rieger, P. G. Biodegradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Environ. Microbiol. 70, 3941–3947 (2004).
doi: 10.1128/AEM.70.7.3941-3947.2004
Chen, F. F. et al. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc. Natl. Acad. Sci. U.S.A. 116, 20644–20654 (2019).
doi: 10.1073/pnas.1908770116
Bentley, R. & Thiessen, C. P. Biosynthesis of itaconic acid in Aspergillus tereus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 226, 703–720 (1957).
pubmed: 13438855
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
doi: 10.1016/S0076-6879(97)76066-X
McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).
doi: 10.1107/S0907444906045975
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Chen, V. B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
doi: 10.1107/S0907444909042073
DeLano, W. L. & Lam, J. W. PyMOL: A communications tool for computational models. Abstr. Pap. Am. Chem. Soc. 230, U1371–U1372 (2005).
Friesner, R. A. et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).
doi: 10.1021/jm0306430

Auteurs

Hye Lin Chun (HL)

College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.

So Yeon Lee (SY)

College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.

Sung Hoon Lee (SH)

College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.

Chang Sup Lee (CS)

College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.

Hyun Ho Park (HH)

College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea. xrayleox@cau.ac.kr.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Mycobacterium tuberculosis Animals Guinea Pigs Bacterial Proteins Toxin-Antitoxin Systems

Helicobacter pylori biofilm interference by N-acyl homoserine lactonases: in vitro and in silico approaches.

Vinoj Gopalakrishnan, Vaijayanthi Saravanan, Maria Infant Majula Shifani Mahendran et al.
1.00
Biofilms Helicobacter pylori Bacterial Proteins Carboxylic Ester Hydrolases Molecular Docking Simulation

Classifications MeSH