Modeling and simulation-based design of electroenzymatic batch processes catalyzed by unspecific peroxygenase from A. aegerita.
electroenzymatic process
enzyme kinetics
hydrogen peroxide
model
simulation
unspecific peroxygenase
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
14
07
2020
revised:
21
08
2020
accepted:
22
08
2020
pubmed:
28
8
2020
medline:
26
11
2021
entrez:
27
8
2020
Statut:
ppublish
Résumé
Unspecific peroxygenases have attracted interest due to their ability to catalyze the oxygenation of various types of C-H bonds using only hydrogen peroxide as a cosubstrate. Due to the instability of these enzymes at even low hydrogen peroxide concentrations, careful fed-batch addition of the cosubstrate or ideally in situ production is required. While various approaches for hydrogen peroxide addition have been qualitatively assessed, only limited kinetic data concerning enzyme inactivation and peroxide accumulation has been reported so far. To obtain quantitative insights into the kinetics of such a process, a detailed data set for a peroxygenase-catalyzed benzylic hydroxylation coupled with electrochemical hydrogen peroxide production is presented. Based on this data set, we set out to model such an electroenzymatic process. For this, initial velocity data for the benzylic hydroxylation is collected and an extended Ping-Pong-Bi-Bi type rate equation is established, which sufficiently describes the enzyme kinetic. Moreover, we propose an empirical inactivation term based on the collected data set. Finally, we show that the full model does not only describe the process with sufficient accuracy, but can also be used predictively to control hydrogen peroxide feeding rates To limit the concentration of this critical cosubstrate in the system.
Substances chimiques
Fungal Proteins
0
Mixed Function Oxygenases
EC 1.-
peroxygenase
EC 1.14.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7-16Subventions
Organisme : Allianz Industrie Forschung
ID : 03169/17
Informations de copyright
© 2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
Références
Asprey, S. P., & Naka, Y. (1999). Mathematical problems in fitting kinetic models. Some new perspectives. Journal of Chemical Engineering of Japan, 32, 328-337. http://joi.jlc.jst.go.jp/JST.JSTAGE/jcej/32.328?from=CrossRef
Bellu, G., Saccomani, M. P., Audoly, S., & D'Angiò, L. (2007). DAISY: A new software tool to test global identifiability of biological and physiological systems. Computer Methods and Programs in Biomedicine, 88, 52-61. https://linkinghub.elsevier.com/retrieve/pii/S0169260707001605
Bormann, S., Gomez Baraibar, A., Ni, Y., Holtmann, D., & Hollmann, F. (2015). Specific oxyfunctionalisations catalysed by peroxygenases: Opportunities, challenges and solutions. Catalysis Science & Technology, 5, 2038-2052. http://xlink.rsc.org/?DOI=C4CY01477D
Brummund, J., Müller, M., Schmitges, T., Kaluzna, I., Mink, D., Hilterhaus, L., & Liese, A. (2016). Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro. Journal of Biotechnology, 233, 143-150. https://doi.org/10.1016/j.jbiotec.2016.07.002
Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z., & Holtmann, D. (2019). Hydrogen peroxide driven biocatalysis. Green Chemistry, 21, 3232-3249. http://pubs.rsc.org/en/Content/ArticleLanding/2019/GC/C9GC00633H
Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 67, 104-137. https://linkinghub.elsevier.com/retrieve/pii/0926656963902116
Cornish-Bowden, A. (1979). Two-substrate reactions. In A. Cornish-Bowden (Ed.), Fundamentals of enzyme kinetics (pp. 99-129). Amsterdam: Elsevier. http://www.sciencedirect.com/science/article/pii/B9780408106177500110
Fernández-Fueyo, E., Ni, Y., Gomez Baraibar, A., Alcalde, M., van Langen, L. M., & Hollmann, F. (2016). Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media. Journal of Molecular Catalysis B: Enzymatic, 134, 347-352. https://doi.org/10.1016/j.molcatb.2016.09.013
Gomez de Santos, P., Cervantes, F. V., Tieves, F., Plou, F. J., Hollmann, F., & Alcalde, M. (2019). Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites. Tetrahedron, 75, 1827-1831. https://doi.org/10.1016/j.tet.2019.02.013
Hernandez, K., Berenguer-Murcia, A., Rodrigues, C., Fernandez-Lafuente, R., & Fernandez-Lafuente, R. (2012). Hydrogen peroxide in biocatalysis. A dangerous liaison. Current Organic Chemistry, 16, 2652-2672. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1385-2728&volume=16&issue=22&spage=2652
Hertweck, D., Emenike, V. N., Spiess, A. C., & Schenkendorf, R. (2020). Rigorous model-based design and experimental verification of enzyme-catalyzed carboligation under enzyme inactivation. Catalysts, 10, 96. https://www.mdpi.com/2073-4344/10/1/96
Horst, A. E. W., Bormann, S., Meyer, J., Steinhagen, M., Ludwig, R., Drews, A., … Holtmann, D. (2016). Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita. Journal of Molecular Catalysis B: Enzymatic, 133, S137-S142. https://linkinghub.elsevier.com/retrieve/pii/S1381117716302922
Karich, A., Scheibner, K., Ullrich, R., & Hofrichter, M. (2016). Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction. Journal of Molecular Catalysis B: Enzymatic, 134, 238-246. https://doi.org/10.1016/j.molcatb.2016.10.014
King, E. L., & Altman, C. (1956). A schematic method of deriving the rate laws for enzyme-catalyzed reactions. Journal of Physical Chemistry, 60, 1375-1378. https://doi.org/10.1021/j150544a010
Kinne, M., Poraj-Kobielska, M., Ralph, S. A., Ullrich, R., Hofrichter, M., & Hammel, K. E. (2009). Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. Journal of Biological Chemistry, 284, 29343-29349.
Kluge, M., Ullrich, R., Scheibner, K., & Hofrichter, M. (2012). Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chemistry, 14, 440-446. http://xlink.rsc.org/?DOI=C1GC16173C
Krieg, T., Hüttmann, S., Mangold, K.-M., Schrader, J., & Holtmann, D. (2011). Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chemistry, 13, 2686. http://xlink.rsc.org/?DOI=c1gc15391a
Molina-Espeja, P., Garcia-Ruiz, E., Gonzalez-Perez, D., Ullrich, R., Hofrichter, M., & Alcalde, M. (2014). Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Applied and Environmental Microbiology, 80, 3496-3507. https://doi.org/10.1128/AEM.00490-14
Molina-Espeja, P., Ma, S., Mate, D. M., Ludwig, R., & Alcalde, M. (2015). Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enzyme and Microbial Technology, 73-74, 29-33. http://www.sciencedirect.com/science/article/pii/S0141022915000484
Ni, Y., Fernández-Fueyo, E., Baraibar, A. G., Ullrich, R., Hofrichter, M., Yanase, H., … Hollmann, F. (2016). Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angewandte Chemie International Edition, 55, 798-801. https://doi.org/10.1002/anie.201507881
Ohs, R., Leipnitz, M., Schöpping, M., & Spiess, A. C. (2018). Simultaneous identification of reaction and inactivation kinetics of an enzyme-catalyzed carboligation. Biotechnology Progress, 34, 1081-1092. https://doi.org/10.1002/btpr.2656
Perz, F., Bormann, S., Ulber, R., Alcalde, M., Bubenheim, P., Hollmann, F., … Liese, A. (2020). Enzymatic oxidation of butane to 2-butanol in a bubble column. ChemCatChem, 12(14), 3666-3669. https://doi.org/10.1002/cctc.202000431
Peter, S., Kinne, M., Ullrich, R., Kayser, G., & Hofrichter, M. (2013). Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzyme and Microbial Technology, 52, 370-376. https://linkinghub.elsevier.com/retrieve/pii/S0141022913000355
Peter, S., Kinne, M., Wang, X., Ullrich, R., Kayser, G., Groves, J. T., & Hofrichter, M. (2011). Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS Journal, 278, 3667-3675. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3586278&tool=pmcentrez&rendertype=abstract
Seelbach, K., van Deurzen, M. P., van Rantwijk, F., Sheldon, R.a, & Kragl, U. (1997). Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnology and Bioengineering, 55, 283-288. http://www.ncbi.nlm.nih.gov/pubmed/18636487
Tieves, F., Tonin, F., Fernández-Fueyo, E., Robbins, J. M., Bommarius, B., Bommarius, A. S., … Hollmann, F. (2019). Energising the E-factor: The E+-factor. Tetrahedron, 75, 1311-1314. https://linkinghub.elsevier.com/retrieve/pii/S004040201930119X
Wang, X., Peter, S., Kinne, M., Hofrichter, M., & Groves, J. T. (2012). Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase compound I. Journal of the American Chemical Society, 134, 12897-12900. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3518585&tool=pmcentrez&rendertype=abstract