The transcriptional elongation rate regulates alternative polyadenylation in yeast.


Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
26 08 2020
Historique:
received: 09 06 2020
accepted: 25 08 2020
pubmed: 28 8 2020
medline: 2 3 2021
entrez: 27 8 2020
Statut: epublish

Résumé

Yeast cells undergoing the diauxic response show a striking upstream shift in poly(A) site utilization, with increased use of ORF-proximal poly(A) sites resulting in shorter 3' mRNA isoforms for most genes. This altered poly(A) pattern is extremely similar to that observed in cells containing Pol II derivatives with slow elongation rates. Conversely, cells containing derivatives with fast elongation rates show a subtle downstream shift in poly(A) sites. Polyadenylation patterns of many genes are sensitive to both fast and slow elongation rates, and a global shift of poly(A) utilization is strongly linked to increased purine content of sequences flanking poly(A) sites. Pol II processivity is impaired in diauxic cells, but strains with reduced processivity and normal Pol II elongation rates have normal polyadenylation profiles. Thus, Pol II elongation speed is important for poly(A) site selection and for regulating poly(A) patterns in response to environmental conditions.

Identifiants

pubmed: 32845240
doi: 10.7554/eLife.59810
pii: 59810
pmc: PMC7532003
doi:
pii:

Substances chimiques

Saccharomyces cerevisiae Proteins 0
Poly A 24937-83-5
RNA Polymerase II EC 2.7.7.-

Banques de données

GEO
['GSE151196']

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM030186
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131801
Pays : United States
Organisme : NIGMS NIH HHS
ID : R37 GM030186
Pays : United States

Informations de copyright

© 2020, Geisberg et al.

Déclaration de conflit d'intérêts

JG, ZM No competing interests declared, KS Senior editor, eLife

Références

Nature. 2014 Jun 19;510(7505):412-6
pubmed: 24814343
Genome Biol. 2009;10(3):R25
pubmed: 19261174
Mol Cell. 2014 May 22;54(4):683-90
pubmed: 24793692
Nat Commun. 2018 Dec 14;9(1):5331
pubmed: 30552333
Genome Res. 2017 Oct;27(10):1685-1695
pubmed: 28916539
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11073-8
pubmed: 23776204
Mol Cell. 2017 May 18;66(4):546-557.e3
pubmed: 28506463
Trends Biochem Sci. 2013 Jun;38(6):312-20
pubmed: 23632313
Cell. 2009 Aug 21;138(4):673-84
pubmed: 19703394
Elife. 2016 Jan 06;5:
pubmed: 26735365
Nat Rev Genet. 2019 Oct;20(10):599-614
pubmed: 31267064
Mol Cell. 2018 Dec 6;72(5):849-861.e6
pubmed: 30318446
Nat Struct Mol Biol. 2012 Aug;19(8):845-52
pubmed: 22820990
Nature. 2015 Jun 18;522(7556):363-7
pubmed: 25896326
Nat Rev Genet. 2013 Jul;14(7):496-506
pubmed: 23774734
OMICS. 2010 Dec;14(6):629-38
pubmed: 20863251
Genome Biol. 2013 Feb 14;14(2):R13
pubmed: 23409723
Yeast. 2015 Dec;32(12):711-20
pubmed: 26305040
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33
pubmed: 19372383
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30
pubmed: 27677860
Mol Cell. 2003 Mar;11(3):709-19
pubmed: 12667453
Mol Cell. 2005 Mar 18;17(6):831-40
pubmed: 15780939
PLoS Genet. 2012;8(4):e1002627
pubmed: 22511879
Genome Res. 2014 Jun;24(6):896-905
pubmed: 24714810
Mol Syst Biol. 2014 Feb 25;10:719
pubmed: 24569168
RNA. 2017 May;23(5):601-610
pubmed: 28153948
Genes Dev. 2001 Jul 15;15(14):1771-82
pubmed: 11459827
Cell. 2010 Dec 10;143(6):1018-29
pubmed: 21145465
Cell. 2014 Feb 13;156(4):812-24
pubmed: 24529382
Mol Cell. 2019 Apr 4;74(1):158-172.e9
pubmed: 30819644
Nucleic Acids Res. 1998 Oct 15;26(20):4676-87
pubmed: 9753737
Mol Cell. 2012 Jun 8;46(5):674-90
pubmed: 22681889
Mol Cell. 2017 Apr 6;66(1):38-49.e6
pubmed: 28318822
Trends Cell Biol. 2016 Mar;26(3):227-237
pubmed: 26597575
Curr Protoc Mol Biol. 2015 Apr 01;110:4.23.1-4.23.17
pubmed: 25827089
Nature. 2013 May 2;497(7447):127-31
pubmed: 23615609
Nature. 2002 May 16;417(6886):304-8
pubmed: 11979277
Curr Protoc Cell Biol. 2004 Sep;Chapter 17:Unit 17.7
pubmed: 18228445
Cell. 2009 Jan 23;136(2):215-33
pubmed: 19167326
Nat Struct Mol Biol. 2012 Jun 05;19(6):577-85
pubmed: 22664985
Biochim Biophys Acta. 2013 Jan;1829(1):39-54
pubmed: 23022618
Mol Cell. 2015 Jul 16;59(2):258-69
pubmed: 26186291
Mol Cell. 2003 Aug;12(2):525-32
pubmed: 14536091
Nature. 2004 Nov 25;432(7016):517-22
pubmed: 15565157
Genome Res. 2013 Oct;23(10):1690-703
pubmed: 23788651
Mol Cell. 2015 Oct 15;60(2):256-67
pubmed: 26474067
Cancer Lett. 2013 Aug 28;337(1):22-5
pubmed: 23726838
Neuron. 2008 Dec 26;60(6):1022-38
pubmed: 19109909
Cell. 2006 Dec 1;127(5):941-54
pubmed: 17129781
Elife. 2020 Aug 26;9:
pubmed: 32845240
Mol Cell Biol. 1997 Aug;17(8):4199-207
pubmed: 9234677
Mol Cell. 2003 Mar;11(3):721-9
pubmed: 12667454
Cell. 2013 Aug 15;154(4):775-88
pubmed: 23932120
RNA. 2017 Dec;23(12):1807-1816
pubmed: 28851752
Nat Rev Genet. 2014 Mar;15(3):163-75
pubmed: 24514444
Crit Rev Biochem Mol Biol. 1997;32(5):405-35
pubmed: 9383611
Science. 2008 Jun 20;320(5883):1643-7
pubmed: 18566288

Auteurs

Joseph V Geisberg (JV)

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.

Zarmik Moqtaderi (Z)

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.

Kevin Struhl (K)

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH