Conservation recommendations for Oryza rufipogon Griff. in China based on genetic diversity analysis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 09 2020
Historique:
received: 04 03 2020
accepted: 06 08 2020
entrez: 3 9 2020
pubmed: 3 9 2020
medline: 9 3 2021
Statut: epublish

Résumé

Over the past 30 years, human disturbance and habitat fragmentation have severely endangered the survival of common wild rice (Oryza rufipogon Griff.) in China. A better understanding of the genetic structure of O. rufipogon populations will therefore be useful for the development of conservation strategies. We examined the diversity and genetic structure of natural O. rufipogon populations at the national, provincial, and local levels using simple sequence repeat (SSR) markers. Twenty representative populations from sites across China showed high levels of genetic variability, and approximately 44% of the total genetic variation was among populations. At the local level, we studied fourteen populations in Guangxi Province and four populations in Jiangxi Province. Populations from similar ecosystems showed less genetic differentiation, and local environmental conditions rather than geographic distance appeared to have influenced gene flow during population genetic evolution. We identified a triangular area, including northern Hainan, southern Guangdong, and southwestern Guangxi, as the genetic diversity center of O. rufipogon in China, and we proposed that this area should be given priority during the development of ex situ and in situ conservation strategies. Populations from less common ecosystem types should also be given priority for in situ conservation.

Identifiants

pubmed: 32873826
doi: 10.1038/s41598-020-70989-w
pii: 10.1038/s41598-020-70989-w
pmc: PMC7462988
doi:

Substances chimiques

DNA, Plant 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14375

Références

Grant, V. & Oka, H. I. Origin of cultivated rice. Taxon 37, 935 (1988).
Khush, G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997).
pubmed: 9291957
Xiao, J. et al. Genes from wild rice improve yield. Nature 384, 223–224 (1996).
Yuan L. P., Virmani S. S. & Mao C. X. Hybrid rice: Achievements and further outlook. in Progress in Irrigated Rice Research. 219–223 (International Rice Research Institute, Manila, 1989).
Yuan L. P. Advantages of and constraints to the use of hybrid rice varieties. in International Workshop on Apomixis in Rice (Wilson K. J. ed.). (Hunan Hybrid Rice Research Center, Changsha, 1993).
Kiang, Y. T., Antonovics, J. & Wu, L. The extinction of wild rice (Oryza perennis formosana) in Taiwan. J. Asian Ecol. 1, 1–9 (1979).
Pang H. H. & Chen C. B. in Wild Rice Resources in China. 204–214 (Science and Technology Press, Guangxi, 2001) (in Chinese).
Ramanatha Rao, V. & Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell. Tissue Organ Cult. 68, 1–19 (2002).
Gao, L. Z. & Hong, S. G. D. Allozyme variation and population genetic structure of common wild rice Oryza rufipogon Griff. in China. Theor. Appl. Genet. 101, 494–502 (2000).
Song, Z., Li, B., Chen, J. & Lu, B. R. Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China. Plant Species Biol. 20, 83–92 (2005).
Gao, L. Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): A region-wide perspective from microsatellite variation. Mol. Ecol. 13, 1009–1024 (2004).
pubmed: 15078440
Zhou, H., Xie, Z. & Ge, S. Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theor. Appl. Genet. 107, 332–339 (2003).
pubmed: 12845446
Xie Z.W. Population genetics and conservation strategies of Oryza rufipogon Griff. in China. PhD Dissertation (Institute of Botany, Chinese Academy of Sciences, Beijing, 1999).
Wang, C. et al. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity 112, 489–496 (2014).
pubmed: 24326293
Morishima, H. & Barbier, P. Mating system and genetic structure of natural populations in wild rice Oryza rufipogon. Plant Species Biol. 5, 31–39 (1990).
Zheng, X. & Ge, S. Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Mol. Ecol. 19, 2439–2454 (2010).
pubmed: 20653085
Wei, X. et al. Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PLoS ONE 7, e49546 (2012).
pubmed: 23166706 pmcid: 3499492
Wang, M. et al. Geographical genetic diversity and divergence of common wild rice (O. rufipogon Griff.) in China. Chin. Sci. Bull. 53, 3559–3566 (2008).
Gao, L.Z., Song, G. & Hong, D.Y. Low levels of genetic diversity within populations and high differentiation among populations of a wild rice, Oryza granulata Nees et Arn. ex Watt., from China. Int. J. Plant Sci. 161, 691–697(2000).
Gao, L.Z., Song, G. & Hong, D.Y. High levels of genetic differentiation of Oryza officinalis Wall. ex Watt. from China. J. Hered. 92, 511–516 (2001).
Liu, F., Zhang, L. & Charlesworth, D. Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc. Biol. Sci. 265, 293–301. https://doi.org/10.1098/rspb.1998.0295 (1998).
doi: 10.1098/rspb.1998.0295 pubmed: 9523432 pmcid: 1688884
Baudry, E., Kerdelhué, C., Innan, H. & Stephan, W. Species and recombination effects on DNA variability in the tomato genus. Genetics 158, 1725–1735 (2001).
pubmed: 11514458 pmcid: 1461759
Chiang, Y. C., Chou, C. H., Huang, S. & Chiang, T. Y. Possible consequences of fungal contamination on the RAPD fingerprinting in Miscanthus (Poaceae). Aust. J. Bot. 51, 197–201. https://doi.org/10.1071/BT02021 (2003).
doi: 10.1071/BT02021
Baudry, E. et al. Species and recombination effects on DNA variability in the tomato genus. Genetics 158, 1725–1735 (2001).
pubmed: 11514458 pmcid: 1461759
Zhou, Y. et al. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol. J. 16, 280–291 (2018).
pubmed: 28635103
Wang, X. et al. Genetic diversity of Oryza rufipogon Griff. in Hainan Province with SSR markers. J. Plant Genet. Resour. 8, 184–188 (2007).
Dong, Y. S., Zhuang, B. C., Zhao, L. M., Sun, H. & He, M. Y. The genetic diversity of annual wild soybeans grown in China. Theor. Appl. Genet. 103, 98–103 (2001).
Zeng, Y. et al. Evaluation of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China. Breed. Sci. 57, 91–99 (2007).
Hsu, J. Late cretaceous and cenozoic vegetation in China, emphasizing their connections with North America. Ann. Mo. Bot. Gard. 70, 490–508 (1983).
Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).
pubmed: 30367062 pmcid: 6203703
López-Pujol, J., Zhang, F. M., Sun, H. Q., Ying, T. S. & Ge, S. Centres of plant endemism in China: Places for survival or for speciation?. J. Biogeogr. 38, 1267–1280 (2011).
Liu, Y., Wang, Y. & Huang, H. High interpopulation genetic differentiation and unidirectional linear migration patterns in Myricaria laxiflora (Tamaricaceae), an endemic riparian plant in the Three Gorges Valley of the Yangtze River. Am. J. Bot. 93, 206–215 (2006).
pubmed: 21646181
Liu, Z. M., Zhao, A. M., Kang, X. Y., Zhou, S. L. & López-Pujol, J. Genetic diversity, population structure, and conservation of Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan Plateau. Plant Biol. (Stuttg) 8, 81–92 (2006).
Ouborg, N. J., Vergeer, P. & Mix, C. The rough edges of the conservation genetics paradigm for plants. J. Ecol. 94, 1233–1248 (2006).
Hu, T. et al. The genetic equidistance result: misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. Sci. China Life Sci. 56, 254–261 (2013).
pubmed: 23526392
Huang, S. New thoughts on an old riddle: What determines genetic diversity within and between species?. Genomics 108, 3–10 (2016).
pubmed: 26835965
Teske, P. R. et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci. Rep. 8, 8448 (2018).
pubmed: 29855482 pmcid: 5981212
Zhao, Y. et al. Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon?. Mol. Ecol. 22, 5531–5547 (2013).
pubmed: 24581006
Edwards, K., Johnstone, C. & Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19, 1349 (1991).
pubmed: 2030957 pmcid: 333874
Fan, W. et al. DataFormater, a software for SSR data formatting to develop population genetics analysis. Mol. Plant Breed. 14, 1029–1034 (2016).
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Wang, M. X. et al. Geographic diversity and differentiation of wild rice (O. rufipogon Griff.) in China. Chinese Sci. Bull. 053, 2768–2775 (2008).
Yang, Q. W. et al. The genetic differentiation of Dongxiang wild rice (Oryza rufipogon Griff.) and its implications for in-situ conservation. Sci. Agric. Sin. 40, 1085–1093 (2007).
Zheng, X.M. & Ge, S. Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Mol. Ecol. 19, 2439–2454 (2010).
Zheng, X.M. et al. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Sci. Adv. 5, eaax3619 (2019).
Yeh, F.C., RC, Y. & Boyle, T. POPGENE version 1.31. Microsoft windows-based freeware for population genetic analysis. Univ. Alberta Cent. Int. For. Res. 11–23 (1998).
Glaubitz, J. CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 4, 309–310 (2004).
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
pubmed: 1213855 pmcid: 1213855
Hartl, D. L. & Clark, A. G. Principles of Population Genetics 3rd edn. (Sinauer, Sunderland, 1997).
Nei M. Molecular Evolutionary Genetics 159–164. (Columbia University Press, New York, 1987).
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
pubmed: 12930761 pmcid: 12930761
Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
pubmed: 17485429
Nei, M. Genetic distances between populations. Am. Nat. 106, 283–292 (1972).
Liu, K. & Muse, S. V PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129 (2005).
pubmed: 15705655 pmcid: 15705655
Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2007).
Liedloff, A. Mantel Nonparametric Test Calculator (School of Natural Resource Sciences, Queensland University of Technology, Queensland, 1999).
Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum. Biol. 76, 173–190 (2004).
pubmed: 15359530
Wang, M. X. et al. Genetic structure of Oryza rufipogon Griff. in China. Heredity 101, 527–535 (2008).
pubmed: 18827837

Auteurs

Junrui Wang (J)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Jinxia Shi (J)

Shanghai Normal University, Shanghai, China.

Sha Liu (S)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Xiping Sun (X)

Shanxi Agricultural University, Jinzhong, China.

Juan Huang (J)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Institute of Rice Research, Guangxi Academy of Agricultural Sciences, Nanning, China.

Weihua Qiao (W)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China.

Yunlian Cheng (Y)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Lifang Zhang (L)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

Xiaoming Zheng (X)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China. zhengxiaoming@caas.cn.
Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China. zhengxiaoming@caas.cn.

Qingwen Yang (Q)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China. yangqingwen@caas.cn.
Agricultural Science and Technology Innovation Program/Crop Germplasm Resources Preservation and Sharing Innovation Team, Beijing, China. yangqingwen@caas.cn.

Articles similaires

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Neoplasms Male Female Middle Aged
Humans Male Female Aged Middle Aged

Classifications MeSH