The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
09 09 2020
Historique:
received: 13 12 2019
accepted: 05 08 2020
entrez: 10 9 2020
pubmed: 11 9 2020
medline: 2 10 2020
Statut: epublish

Résumé

With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.

Identifiants

pubmed: 32908143
doi: 10.1038/s41467-020-18140-1
pii: 10.1038/s41467-020-18140-1
pmc: PMC7481251
doi:

Substances chimiques

Mechanistic Target of Rapamycin Complex 1 EC 2.7.11.1
Sirolimus W36ZG6FT64

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4510

Subventions

Organisme : NIAMS NIH HHS
ID : R01 AR074985
Pays : United States

Références

Janssen, I., Shepard, D. S., Katzmarzyk, P. T. & Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52, 80–85 (2004).
pubmed: 14687319
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838 pmcid: 3836174
Stallone, G., Infante, B., Prisciandaro, C. & Grandaliano, G. mTOR and aging: an old fashioned dress. Int. J. Mol. Sci. 20, 2774 (2019).
Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: an inhibitor of aging emerges from the soil of Easter island. J. Gerontol. A Biol. Sci. Med. Sci. 71, 841–849 (2016).
pubmed: 27208895 pmcid: 4906330
Bodine, S. C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014–1019 (2001).
pubmed: 11715023
Moro, T., Ebert, S. M., Adams, C. M. & Rasmussen, B. B. Amino acid sensing in skeletal muscle. Trends Endocrinol. Metab. 27, 796–806 (2016).
pubmed: 27444066 pmcid: 5075248
Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Investig. 123, 3272–3291 (2013).
pubmed: 23863708
Bentzinger, C. F. et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8, 411–424 (2008).
pubmed: 19046572
Risson, V. et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J. Cell Biol. 187, 859–874 (2009).
pubmed: 20008564 pmcid: 2806319
Rion, N. et al. mTOR controls embryonic and adult myogenesis via mTORC1. Development 146, (2019).
Castets, P. et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab. 17, 731–744 (2013).
pubmed: 23602450
Guridi, M., Tintignac, L. A., Lin, S., Kupr, B., Castets, P. & Ruegg, M. A. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci. Signal 8, ra113 (2015).
pubmed: 26554817
Barns, M., Gondro, C., Tellam, R. L., Radley-Crabb, H. G., Grounds, M. D. & Shavlakadze, T. Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice. Int. J. Biochem. Cell Biol. 53, 174–185 (2014).
pubmed: 24836906
White, Z., White, R. B., McMahon, C., Grounds, M. D. & Shavlakadze, T. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int. J. Biochem. Cell Biol. 78, 10–21 (2016).
pubmed: 27343428
Joseph, G. A. et al. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with sarcopenia. Mol. Cell. Biol. 39, e00141-19 (2019).
Tang, H. et al. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell 18, e12943 (2019).
pubmed: 30924297 pmcid: 6516169
Baar, E. L., Carbajal, K. A., Ong, I. M. & Lamming, D. W. Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell 15, 155–166 (2016).
pubmed: 26695882
Markofski, M. M. et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp. Gerontol. 65, 1–7 (2015).
pubmed: 25735236 pmcid: 4397165
Brockhoff, M. et al. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J. Clin. Investig. 127, 549–563 (2017).
pubmed: 28067669
Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103 (2012).
pubmed: 22837538 pmcid: 3613228
Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).
pubmed: 24341993 pmcid: 4032600
Sohal, R. S. & Forster, M. J. Caloric restriction and the aging process: a critique. Free Radic. Biol. Med. 73, 366–382 (2014).
pubmed: 24941891
Santilli, V., Bernetti, A., Mangone, M. & Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Min. Bone Metab. 11, 177–180 (2014).
Yuan, R. et al. Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc. Natl Acad. Sci. USA 109, 8224–8229 (2012).
pubmed: 22566614
Lexell, J., Taylor, C. C. & Sjostrom, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 84, 275–294 (1988).
pubmed: 3379447
Kung, T. A., Cederna, P. S., van der Meulen, J. H., Urbanchek, M. G., Kuzon, W. M. Jr. & Faulkner, J. A. Motor unit changes seen with skeletal muscle sarcopenia in oldest old rats. J. Gerontol. A Biol. Sci. Med. Sci. 69, 657–665 (2014).
pubmed: 24077596
Nilwik, R. et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48, 492–498 (2013).
pubmed: 23425621
Ham, A. S. et al. mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice. J. Cachexia Sarcopenia Muscle 11, 259–273 (2020).
pubmed: 31697050
Hepple, R. T. & Rice, C. L. Innervation and neuromuscular control in ageing skeletal muscle. J. Physiol. 594, 1965–1978 (2016).
pubmed: 26437581
Lexell, J. & Downham, D. Y. The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol. 81, 377–381 (1991).
pubmed: 2028741
Yoon, M. S. mTOR as a key regulator in maintaining skeletal muscle mass. Front. Physiol. 8, 788 (2017).
pubmed: 29089899 pmcid: 5650960
Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).
pubmed: 15306821
Castets, P. et al. mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4. Nat. Commun. 10, 3187 (2019).
pubmed: 31320633 pmcid: 6639401
Dalle, S., Rossmeislova, L. & Koppo, K. The role of inflammation in age-related sarcopenia. Front. Physiol. 8, 1045 (2017).
pubmed: 29311975 pmcid: 5733049
Rieu, I. et al. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J. Physiol. 587, 5483–5492 (2009).
pubmed: 19752122 pmcid: 2793878
Guttridge, D. C., Mayo, M. W., Madrid, L. V., Wang, C. Y. & Baldwin, A. S. Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289, 2363–2366 (2000).
pubmed: 11009425
Valdez, G. et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc. Natl Acad. Sci. USA 107, 14863–14868 (2010).
pubmed: 20679195
Abe, T. et al. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J. Sports Sci. Med. 10, 145–150 (2011).
pubmed: 24149307 pmcid: 3737910
Pannerec, A. et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging 8, 712–729 (2016).
pubmed: 27019136 pmcid: 4925824
Piasecki, M. et al. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J. Physiol. 596, 1627–1637 (2018).
pubmed: 29527694 pmcid: 5924831
Ham, D. J. & Ruegg, M. A. Causes and consequences of age-related changes at the neuromuscular junction. Curr. Opin. Physiol. 4, 32–39 (2018).
Rudolf, R., Khan, M. M., Labeit, S. & Deschenes, M. R. Degeneration of neuromuscular junction in age and dystrophy. Front. Aging Neurosci. 6, 99 (2014).
pubmed: 24904412 pmcid: 4033055
Jones, R. A. et al. NMJ-morph reveals principal components of synaptic morphology influencing structure-function relationships at the neuromuscular junction. Open Biol. 6, 160240 (2016).
Zhao, K. et al. Sarcoglycan alpha mitigates neuromuscular junction decline in aged mice by stabilizing LRP4. J. Neurosci. 38, 8860–8873 (2018).
pubmed: 30171091 pmcid: 6181315
Wood, S. J. & Slater, C. R. Safety factor at the neuromuscular junction. Prog. Neurobiol. 64, 393–429 (2001).
pubmed: 11275359
Terry, E. E. et al. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. eLife 7, e34613 (2018).
Zeman, R. J. et al. Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflug. Arch. 458, 525–535 (2009).
Nakao, R., Shimba, S. & Oishi, K. Ketogenic diet induces expression of the muscle circadian gene Slc25a25 via neural pathway that might be involved in muscle thermogenesis. Sci. Rep. 7, 2885 (2017).
pubmed: 28588221 pmcid: 5460244
Summermatter, S. et al. Blockade of metallothioneins 1 and 2 increases skeletal muscle mass and strength. Mol. Cell. Biol. 37, (2017).
Baehr, L. M. et al. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis. Aging 8, 127–146 (2016).
pubmed: 26826670 pmcid: 4761718
Gonzalez de Aguilar, J. L. et al. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol. Genomics 32, 207–218 (2008).
pubmed: 18000159
Ketterer, C., Zeiger, U., Budak, M. T., Rubinstein, N. A. & Khurana, T. S. Identification of the neuromuscular junction transcriptome of extraocular muscle by laser capture microdissection. Investig. Ophthalmol. Vis. Sci. 51, 4589–4599 (2010).
Giordani, L. et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol. Cell 74, 609–621 e606 (2019).
Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018).
pubmed: 29121237
Greising, S. M., Ermilov, L. G., Sieck, G. C. & Mantilla, C. B. Ageing and neurotrophic signalling effects on diaphragm neuromuscular function. J. Physiol. 593, 431–440 (2015).
pubmed: 25630263
Willadt, S., Nash, M. & Slater, C. R. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci. Rep. 6, 24849 (2016).
pubmed: 27094316 pmcid: 4837408
Ouanounou, G., Baux, G. & Bal, T. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission. eLife 5, e12190 (2016).
Mahoney, R. E., Rawson, J. M. & Eaton, B. A. An age-dependent change in the set point of synaptic homeostasis. J. Neurosci. 34, 2111–2119 (2014).
pubmed: 24501352 pmcid: 3913865
Wu, J. J. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep. 4, 913–920 (2013).
pubmed: 23994476 pmcid: 3784301
Norrmen, C., Figlia, G., Pfistner, P., Pereira, J. A., Bachofner, S. & Suter, U. mTORC1 is transiently reactivated in injured nerves to promote c-Jun elevation and Schwann cell dedifferentiation. J. Neurosci. 38, 4811–4828 (2018).
pubmed: 29695414 pmcid: 5956991
Figlia, G., Gerber, D. & Suter, U. Myelination and mTOR. Glia 66, 693–707 (2018).
pubmed: 29210103
Witzemann, V., Brenner, H. R. & Sakmann, B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J. Cell. Biol. 114, 125–141 (1991).
pubmed: 1646821
Adams, C. M., Ebert, S. M. & Dyle, M. C. Role of ATF4 in skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 20, 164–168 (2017).
pubmed: 28376050
Gordon, P. M. et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J. Appl. Physiol. 112, 443–453 (2012).
pubmed: 22052873
Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).
pubmed: 14718385
Chen, Y. L. et al. Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy. Nat. Commun. 10, 2602 (2019).
pubmed: 31197136 pmcid: 6565724
Ewald, C. Y., Landis, J. N., Porter Abate, J., Murphy, C. T. & Blackwell, T. K. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519, 97–101 (2015).
pubmed: 25517099
Cescon, M. et al. Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol. 136, 483–499 (2018).
pubmed: 29752552
Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).
pubmed: 25501907
Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).
pubmed: 11875047 pmcid: 11875047
Hamers, F. P., Lankhorst, A. J., van Laar, T. J., Veldhuis, W. B. & Gispen, W. H. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J. Neurotrauma 18, 187–201 (2001).
pubmed: 11229711
Schmidt, N. et al. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of alpha-dystrobrevin. J. Cell Biol. 195, 1171–1184 (2011).
pubmed: 22184199 pmcid: 3246897
Delezie, J. et al. BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc. Natl Acad. Sci. USA 116, 16111–16120 (2019).
pubmed: 31320589
Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
pubmed: 22543367 pmcid: 3371832
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712
Kibbe, W. A. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007).
pubmed: 17452344 pmcid: 1933198
Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).
pubmed: 11086982
Wang, X. et al. Activity-dependent presynaptic regulation of quantal size at the mammalian neuromuscular junction in vivo. J. Neurosci. 25, 343–351 (2005).
pubmed: 15647477 pmcid: 6725499
Wang, X., Pinter, M. J. & Rich, M. M. Ca2+ dependence of the binomial parameters p and n at the mouse neuromuscular junction. J. Neurophysiol. 103, 659–666 (2010).
pubmed: 19939953
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 pmcid: 19910308
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 16199517
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 pmcid: 19131956
Luisier, R. et al. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res. 42, 4180–4195 (2014).
pubmed: 24464994 pmcid: 3985636
Snel, B., Lehmann, G., Bork, P. & Huynen, M. A. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442–3444 (2000).
pubmed: 10982861 pmcid: 10982861
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids Res. 30, 38–41 (2002).
pubmed: 11752248 pmcid: 99161
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
pubmed: 27043002 pmcid: 27043002
Koster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 34, 3600 (2018).
pubmed: 29788404
Tomfohr, J., Lu, J. & Kepler, T. B. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinforma. 6, 225 (2005).
Johnson, R. & Wichern, D. Applied Multivariate Statistical Analysis (Pearson, 2013).
Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).
pubmed: 11752295 pmcid: 99122

Auteurs

Daniel J Ham (DJ)

Biozentrum, University of Basel, Basel, Switzerland.

Anastasiya Börsch (A)

Biozentrum, University of Basel, Basel, Switzerland.

Shuo Lin (S)

Biozentrum, University of Basel, Basel, Switzerland.

Marco Thürkauf (M)

Biozentrum, University of Basel, Basel, Switzerland.

Martin Weihrauch (M)

Biozentrum, University of Basel, Basel, Switzerland.

Judith R Reinhard (JR)

Biozentrum, University of Basel, Basel, Switzerland.

Julien Delezie (J)

Biozentrum, University of Basel, Basel, Switzerland.

Fabienne Battilana (F)

Biozentrum, University of Basel, Basel, Switzerland.

Xueyong Wang (X)

Department of Neurology, Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA.

Marco S Kaiser (MS)

Biozentrum, University of Basel, Basel, Switzerland.

Maitea Guridi (M)

Biozentrum, University of Basel, Basel, Switzerland.

Michael Sinnreich (M)

Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland.

Mark M Rich (MM)

Department of Neurology, Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, USA.

Nitish Mittal (N)

Biozentrum, University of Basel, Basel, Switzerland.

Lionel A Tintignac (LA)

Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland.

Christoph Handschin (C)

Biozentrum, University of Basel, Basel, Switzerland.

Mihaela Zavolan (M)

Biozentrum, University of Basel, Basel, Switzerland.

Markus A Rüegg (MA)

Biozentrum, University of Basel, Basel, Switzerland. markus-a.ruegg@unibas.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH