Low-frequency oscillation suppression in dystonia: Implications for adaptive deep brain stimulation.
Adaptive deep brain stimulation
Closed-loop
Dystonia
Internal globus pallidus
Local field potentials
Low-frequency oscillations
Journal
Parkinsonism & related disorders
ISSN: 1873-5126
Titre abrégé: Parkinsonism Relat Disord
Pays: England
ID NLM: 9513583
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
07
04
2020
revised:
18
08
2020
accepted:
21
08
2020
pubmed:
13
9
2020
medline:
3
2
2022
entrez:
12
9
2020
Statut:
ppublish
Résumé
Low-frequency oscillations (LFO) detected in the internal globus pallidus of dystonia patients have been identified as a physiomarker for adaptive Deep Brain Stimulation (aDBS), since LFO correlate with dystonic symptoms and are rapidly suppressed by continuous DBS (cDBS). However, it is as yet unclear how LFO should be incorporated as feedback for aDBS. to test the acute effects of aDBS, using the amplitude of short-lived LFO-bursts to titrate stimulation, to explore the immediate effects of cDBS on LFO-modulation and dystonic symptoms, and to investigate whether a difference in the resting-state LFO is present between DBS-naïve patients and patients with chronic DBS. seven patients were assessed during either DBS-implantation (n = 2) or battery replacement surgery (n = 5), and pseudorandomized in three conditions: no stimulation, cDBS, and aDBS. Additionally, resting-state LFP-recordings from patients undergoing battery replacement were compared to those obtained during DBS-implantation; LFP-recordings from a previous cohort of six dystonia patients undergoing DBS-implantation were incorporated into this analysis (total n = 8 newly implanted patients). we corroborated that a mild LFO-suppression rapidly occurs during cDBS. However, no acute changes in clinical symptoms were observed after cDBS or aDBS. Remarkably, we observed that resting-state LFO were significantly lower in patients who had been effectively treated with chronic cDBS compared to those of newly implanted patients, even when stimulation was suspended. our results indicate that LFO-suppression in dystonia, similar to symptom response to cDBS, might be gradual, and remain after stimulation is suspended. Therefore, tracking gradual changes in LFO may be required for aDBS implementation.
Sections du résumé
BACKGROUND
Low-frequency oscillations (LFO) detected in the internal globus pallidus of dystonia patients have been identified as a physiomarker for adaptive Deep Brain Stimulation (aDBS), since LFO correlate with dystonic symptoms and are rapidly suppressed by continuous DBS (cDBS). However, it is as yet unclear how LFO should be incorporated as feedback for aDBS.
OBJECTIVES
to test the acute effects of aDBS, using the amplitude of short-lived LFO-bursts to titrate stimulation, to explore the immediate effects of cDBS on LFO-modulation and dystonic symptoms, and to investigate whether a difference in the resting-state LFO is present between DBS-naïve patients and patients with chronic DBS.
METHODS
seven patients were assessed during either DBS-implantation (n = 2) or battery replacement surgery (n = 5), and pseudorandomized in three conditions: no stimulation, cDBS, and aDBS. Additionally, resting-state LFP-recordings from patients undergoing battery replacement were compared to those obtained during DBS-implantation; LFP-recordings from a previous cohort of six dystonia patients undergoing DBS-implantation were incorporated into this analysis (total n = 8 newly implanted patients).
RESULTS
we corroborated that a mild LFO-suppression rapidly occurs during cDBS. However, no acute changes in clinical symptoms were observed after cDBS or aDBS. Remarkably, we observed that resting-state LFO were significantly lower in patients who had been effectively treated with chronic cDBS compared to those of newly implanted patients, even when stimulation was suspended.
CONCLUSIONS
our results indicate that LFO-suppression in dystonia, similar to symptom response to cDBS, might be gradual, and remain after stimulation is suspended. Therefore, tracking gradual changes in LFO may be required for aDBS implementation.
Identifiants
pubmed: 32919097
pii: S1353-8020(20)30696-9
doi: 10.1016/j.parkreldis.2020.08.030
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
105-109Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.