Donor-specific antibody characteristics, including persistence and complement-binding capacity, increase risk for chronic lung allograft dysfunction.
Bronchiolitis Obliterans
/ surgery
Chronic Disease
Complement C1q
/ metabolism
Female
Follow-Up Studies
Graft Survival
HLA Antigens
/ immunology
Humans
Isoantibodies
/ immunology
Lung
/ immunology
Lung Transplantation
/ adverse effects
Male
Middle Aged
Primary Graft Dysfunction
/ diagnosis
Retrospective Studies
Tissue Donors
Transplant Recipients
Transplantation, Homologous
C1q
chronic lung allograft dysfunction
complement fixing antibodies
donor-specific antibody
lung transplantation
Journal
The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation
ISSN: 1557-3117
Titre abrégé: J Heart Lung Transplant
Pays: United States
ID NLM: 9102703
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
25
06
2020
revised:
24
08
2020
accepted:
01
09
2020
pubmed:
29
9
2020
medline:
29
9
2021
entrez:
28
9
2020
Statut:
ppublish
Résumé
Chronic lung allograft dysfunction (CLAD) is the major complication limiting long-term survival in lung transplant recipients (LTRs), with those developing donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) previously found to have increased risk for CLAD. However, as DSA responses vary in timing of development, specificity, breadth, persistence, and complement-binding capacity, we hypothesized that these characteristics would impact CLAD and survival outcomes. We retrospectively analyzed DSA characteristics and outcomes in a single-center cohort of 582 LTRs who had serum samples collected prospectively from 2010 to 2016. Luminex-based single antigen bead assays were performed to assess DSA. DSAs were detected in 247 LTRs (42%), of which 124 (21.3%) were de novo DSAs and 53 (9.1%) were complement-binding (C1q+). CLAD developed in 208 LTRs (35.7%) during the follow-up period, with 67.8% determined as bronchiolitis obliterans syndrome phenotype and 32.2% as restrictive allograft syndrome phenotype. We found a shorter time to CLAD in LTRs with persistent DSAs (p = 0.04) and HLA-DQ-specific DSAs (p = 0.03). LTRs who developed C1q+ DSAs had significantly shorter time to CLAD (p < 0.001), with 100% of C1q+ DSAs being persistent and no differences between CLAD phenotypes. CLAD-free survival was significantly reduced in LTRs who developed C1q+ DSAs (p = 0.001), HLA-DQ-specific DSAs (p = 0.03), and multiple DSAs (p = 0.02). Together, our findings demonstrate that DSA characteristics of persistence, HLA-DQ specificity, and C1q+ DSAs are associated with shorter time to CLAD. Additionally, C1q+, HLA-DQ-specific, and multiple DSAs are associated with decreased CLAD-free survival. These characteristics may improve DSA risk stratification for deleterious outcomes in LTRs.
Sections du résumé
BACKGROUND
Chronic lung allograft dysfunction (CLAD) is the major complication limiting long-term survival in lung transplant recipients (LTRs), with those developing donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) previously found to have increased risk for CLAD. However, as DSA responses vary in timing of development, specificity, breadth, persistence, and complement-binding capacity, we hypothesized that these characteristics would impact CLAD and survival outcomes.
METHODS
We retrospectively analyzed DSA characteristics and outcomes in a single-center cohort of 582 LTRs who had serum samples collected prospectively from 2010 to 2016. Luminex-based single antigen bead assays were performed to assess DSA.
RESULTS
DSAs were detected in 247 LTRs (42%), of which 124 (21.3%) were de novo DSAs and 53 (9.1%) were complement-binding (C1q+). CLAD developed in 208 LTRs (35.7%) during the follow-up period, with 67.8% determined as bronchiolitis obliterans syndrome phenotype and 32.2% as restrictive allograft syndrome phenotype. We found a shorter time to CLAD in LTRs with persistent DSAs (p = 0.04) and HLA-DQ-specific DSAs (p = 0.03). LTRs who developed C1q+ DSAs had significantly shorter time to CLAD (p < 0.001), with 100% of C1q+ DSAs being persistent and no differences between CLAD phenotypes. CLAD-free survival was significantly reduced in LTRs who developed C1q+ DSAs (p = 0.001), HLA-DQ-specific DSAs (p = 0.03), and multiple DSAs (p = 0.02).
CONCLUSIONS
Together, our findings demonstrate that DSA characteristics of persistence, HLA-DQ specificity, and C1q+ DSAs are associated with shorter time to CLAD. Additionally, C1q+, HLA-DQ-specific, and multiple DSAs are associated with decreased CLAD-free survival. These characteristics may improve DSA risk stratification for deleterious outcomes in LTRs.
Identifiants
pubmed: 32981841
pii: S1053-2498(20)31722-8
doi: 10.1016/j.healun.2020.09.003
pii:
doi:
Substances chimiques
HLA Antigens
0
Isoantibodies
0
Complement C1q
80295-33-6
Types de publication
Journal Article
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1417-1425Informations de copyright
Copyright © 2020 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.