Assessment of Ataxia Rating Scales and Cerebellar Functional Tests: Critique and Recommendations.
Friedreich's ataxia
ataxia
cerebellar disorders
clinical trials
rating scales
spinocerebellar ataxia
Journal
Movement disorders : official journal of the Movement Disorder Society
ISSN: 1531-8257
Titre abrégé: Mov Disord
Pays: United States
ID NLM: 8610688
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
28
07
2020
revised:
28
08
2020
accepted:
08
09
2020
pubmed:
7
10
2020
medline:
28
4
2021
entrez:
6
10
2020
Statut:
ppublish
Résumé
We assessed the clinimetric properties of ataxia rating scales and functional tests, and made recommendations regarding their use. A systematic literature search was conducted to identify the instruments used to rate ataxia symptoms. The identified rating scales and functional ability tests were reviewed and ranked by the panel as "recommended," "suggested," or "listed" for the assessment of patients with discrete cerebellar disorders, using previously established criteria. We reviewed 14 instruments (9 rating scales and 5 functional tests). "Recommended" rating scales for the assessment of symptoms severity were: for Friedreich's ataxia, the Friedreich's Ataxia Rating Scale, the International Cooperative Ataxia Rating Scale (ICARS), and the Scale for the Assessment and Rating of Ataxia (SARA); for spinocerebellar ataxias, ICARS and SARA; for ataxia telangiectasia: ICARS and SARA; for brain tumors, SARA; for congenital disorder of glycosylation-phosphomannomutase-2 deficiency, ICARS; for cerebellar symptoms in multiple sclerosis, ICARS; for cerebellar symptoms in multiple system atrophy: Unified Multiple System Atrophy Rating Scale and ICARS; and for fragile X-associated tremor ataxia syndrome, ICARS. "Recommended" functional tests were: for Friedreich's ataxia, Ataxia Functional Composite Score and Composite Cerebellar Functional Severity Score; and for spinocerebellar ataxias, Ataxia Functional Composite Score, Composite Cerebellar Functional Severity Score, and SCA Functional Index. We identified some "recommended" scales and functional tests for the assessment of patients with major hereditary ataxias and other cerebellar disorders. The main limitations of these instruments include the limited assessment of patients in the more severe end of the spectrum and children. Further research in these populations is warranted. © 2020 International Parkinson and Movement Disorder Society.
Sections du résumé
BACKGROUND
We assessed the clinimetric properties of ataxia rating scales and functional tests, and made recommendations regarding their use.
METHODS
A systematic literature search was conducted to identify the instruments used to rate ataxia symptoms. The identified rating scales and functional ability tests were reviewed and ranked by the panel as "recommended," "suggested," or "listed" for the assessment of patients with discrete cerebellar disorders, using previously established criteria.
RESULTS
We reviewed 14 instruments (9 rating scales and 5 functional tests). "Recommended" rating scales for the assessment of symptoms severity were: for Friedreich's ataxia, the Friedreich's Ataxia Rating Scale, the International Cooperative Ataxia Rating Scale (ICARS), and the Scale for the Assessment and Rating of Ataxia (SARA); for spinocerebellar ataxias, ICARS and SARA; for ataxia telangiectasia: ICARS and SARA; for brain tumors, SARA; for congenital disorder of glycosylation-phosphomannomutase-2 deficiency, ICARS; for cerebellar symptoms in multiple sclerosis, ICARS; for cerebellar symptoms in multiple system atrophy: Unified Multiple System Atrophy Rating Scale and ICARS; and for fragile X-associated tremor ataxia syndrome, ICARS. "Recommended" functional tests were: for Friedreich's ataxia, Ataxia Functional Composite Score and Composite Cerebellar Functional Severity Score; and for spinocerebellar ataxias, Ataxia Functional Composite Score, Composite Cerebellar Functional Severity Score, and SCA Functional Index.
CONCLUSIONS
We identified some "recommended" scales and functional tests for the assessment of patients with major hereditary ataxias and other cerebellar disorders. The main limitations of these instruments include the limited assessment of patients in the more severe end of the spectrum and children. Further research in these populations is warranted. © 2020 International Parkinson and Movement Disorder Society.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
283-297Informations de copyright
© 2020 International Parkinson and Movement Disorder Society.
Références
Akbar U, Ashizawa T. Ataxia. Neurol Clin 2015;33:225-248.
Pandolfo M, Manto M. Cerebellar and afferent ataxias. Continuum (Minneap Minn) 2013;19:1312-1343.
Trouillas P, Takayanagi T, Hallett M, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology committee of the world federation of neurology. J Neurol Sci 1997;145:205-211.
Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014;42:174-183.
Saute JA, Donis KC, Serrano-Munuera C, et al. Ataxia rating scales-psychometric profiles, natural history and their application in clinical trials. Cerebellum 2012;11:488-504.
Paap BK, Roeske S, Durr A, et al. Standardized assessment of hereditary ataxia patients in clinical studies. Mov Disord Clin Pract 2016;3:230-240.
Skorvanek M, Goldman JG, Jahanshahi M, et al. Global scales for cognitive screening in Parkinson's disease: critique and recommendations. Mov Disord 2018;33:208-218.
Martinez-Martin P, Forjaz MJ. How to evaluate validation data. In: Sampaio C, Goetz CG, Schrag A, eds. Rating Scales in Parkinson's Disease: Clinical Practice and Research. New York, NY: Oxford University Press; 2012.
Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord 2009;24:1820-1828.
Camargos S, Cardoso F, Maciel R, et al. Brief ataxia rating scale: a reliable tool to rate ataxia in a short timeframe. Mov Disord Clin Pract 2016;3:621-623.
Brandsma R, Spits AH, Kuiper MJ, et al. Ataxia rating scales are age-dependent in healthy children. Dev Med Child Neurol 2014;56:556-563.
Hartley H, Pizer B, Lane S, et al. Inter-rater reliability and validity of two ataxia rating scales in children with brain tumours. Childs Nerv Syst 2015;31:693-697.
Nissenkorn A, Borgohain R, Micheli R, et al. Development of global rating instruments for pediatric patients with ataxia telangiectasia. Eur J Paediatr Neurol 2016;20:140-146.
Velazquez-Perez L, Cerecedo-Zapata CM, Hernandez-Hernandez O, et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 2015;16:11-21.
Gagnon C, Brais B, Lessard I, Lavoie C, Cote I, Mathieu J. Development and validation of a disease severity index for ataxia of Charlevoix-Saguenay. Neurology 2019;93:e1543-e1549.
Cano SJ, Riazi A, Schapira AH, Cooper JM, Hobart JC. Friedreich's ataxia impact scale: a new measure striving to provide the flexibility required by today's studies. Mov Disord 2009;24:984-992.
Tai G, Yiu EM, Corben LA, Delatycki MB. A longitudinal study of the Friedreich ataxia impact scale. J Neurol Sci 2015;352:53-57.
Subramony SH, May W, Lynch D, et al. Measuring friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 2005;64:1261-1262.
Friedman LS, Farmer JM, Perlman S, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov Disord 2010;25:426-432.
Rummey C, Corben LA, Delatycki MB, et al. Psychometric properties of the Friedreich ataxia rating scale. Neurol Genet 2019;5:371.
Regner SR, Wilcox NS, Friedman LS, et al. Friedreich ataxia clinical outcome measures: natural history evaluation in 410 participants. J Child Neurol 2012;27:1152-1158.
Lynch DR, Farmer JM, Tsou AY, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology 2006;66:1711-1716.
Fahey MC, Corben L, Collins V, Churchyard AJ, Delatycki MB. How is disease progress in Friedreich's ataxia best measured? A study of four rating scales. J Neurol Neurosurg Psychiatry 2007;78:411-413.
Burk K, Malzig U, Wolf S, et al. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord 2009;24:1779-1784.
Tai G, Yiu EM, Delatycki MB, Corben LA. How does performance of the Friedreich ataxia functional composite compare to rating scales? J Neurol Neurosurg Psychiatry 2017;264:1768-1776.
Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol 2015;14:174-182.
Reetz K, Dogan I, Hilgers RD, et al. Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol 2016;15:1346-1354.
Bonilha da Silva C, Bergo FPG, D'Abreu A, Cendes F, Lopes-Cendes I, Franca MC Jr. Dentate nuclei T2 relaxometry is a reliable neuroimaging marker in Friedreich's ataxia. Eur J Neurol 2014;21:1131-1136.
Clemm von Hohenberg C, Schocke MF, Wigand MC, et al. Radial diffusivity in the cerebellar peduncles correlates with clinical severity in Friedreich ataxia. Neurol Sci 2013;34:1459-1462.
Akhlaghi H, Corben L, Georgiou-Karistianis N, et al. Superior cerebellar peduncle atrophy in Friedreich's ataxia correlates with disease symptoms. Cerebellum 2011;10:81-87.
Chevis CF, da Silva CB, D'Abreu A, et al. Spinal cord atrophy correlates with disability in Friedreich's ataxia. Cerebellum 2013;12:43-47.
Leehey MA, Berry-Kravis E, Goetz CG, et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 2008;70:1397-1402.
Hall DA, Stebbins GT, Jacquemont S, et al. Clinimetric properties of the fragile X-associated tremor ataxia syndrome rating scale. Mov Disord Clin Pract 2019;6:120-124.
Hall D, Todorova-Koteva K, Pandya S, et al. Neurological and endocrine phenotypes of fragile X carrier women. Clin Genet 2016;89:60-67.
Vittal P, Pandya S, Sharp K, et al. ASFMR1 splice variant: a predictor of fragile X-associated tremor/ataxia syndrome. Neurol Genet 2018;4:e246.
O'Keefe JA, Robertson-Dick EE, Hall DA, Berry-Kravis E. Gait and functional mobility deficits in Fragile X-Associated Tremor/Ataxia Syndrome. Cerebellum 2016;15:475-482.
Schmitz-Hubsch T, Tezenas du Montcel S, Baliko L, et al. Reliability and validity of the International Cooperative Ataxia Rating Scale: a study in 156 spinocerebellar ataxia patients. Mov Disord 2006;21:699-704.
Cano SJ, Hobart JC, Hart PE, Korlipara LV, Schapira AH, Cooper JM. International Cooperative Ataxia Rating Scale (ICARS): appropriate for studies of Friedreich's ataxia? Mov Disord 2005;20:1585-1591.
Metz G, Coppard N, Cooper JM, et al. Rating disease progression of Friedreich's ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain 2013;136:259-268.
Tison F, Yekhlef F, Balestre E, et al. Application of the international cooperative ataxia scale rating in multiple system atrophy. Mov Disord 2002;17:1248-1254.
Schoch B, Regel JP, Frings M, et al. Reliability and validity of ICARS in focal cerebellar lesions. Mov Disord 2007;22:2162-2169.
Salci Y, Fil A, Keklicek H, et al. Validity and reliability of the International Cooperative Ataxia Rating Scale (ICARS) and the Scale for the Assessment and Rating of Ataxia (SARA) in multiple sclerosis patients with ataxia. Mult Scler Relat Disord 2017;18:135-140.
D'Abreu A, Franca M Jr, Lopes-Cendes I, Cendes F. The international cooperative ataxia rating scale in Machado-Joseph disease. Comparison with the unified multiple system atrophy rating scale. Mov Disord 2007;22:1976-1979.
Burk K, Schulz SR, Schulz JB. Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales. J Neurochem 2013;126(suppl 1):118-124.
Serrano M, de Diego V, Muchart J, et al. Phosphomannomutase deficiency (PMM2-CDG): ataxia and cerebellar assessment. Orphanet J Rare Dis 2015;10:138.
Storey E, Tuck K, Hester R, Hughes A, Churchyard A. Inter-rater reliability of the International Cooperative Ataxia Rating Scale (ICARS). Mov Disord 2004;19:190-192.
Itzep D, Martinez-Monseny AF, Bolasell M, et al. Clinical assessment of dysarthria in children with cerebellar syndrome associated with PMM2-CDG. Cerebellum 2018;49:408-413.
Loesch DZ, Churchyard A, Brotchie P, Marot M, Tassone F. Evidence for, and a spectrum of, neurological involvement in carriers of the fragile X pre-mutation: FXTAS and beyond. Clin Genet 2005;67:412-417.
Kitamura K, Nakayama K, Kosaka S, et al. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology 2008;50:285-292.
Richter S, Dimitrova A, Maschke M, et al. Degree of cerebellar ataxia correlates with three-dimensional mri-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 2005;54:23-27.
Camargos ST, Marques W Jr, Santos AC. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients. Arq Neuropsiquiatr 2011;69:292-296.
Eichler L, Bellenberg B, Hahn HK, Koster O, Schols L, Lukas C. Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. AJNR Am J Neuroradiol 2011;32:890-897.
Kieling C, Rieder CR, Silva AC, et al. A neurological examination score for the assessment of spinocerebellar ataxia 3 (SCA3). Eur J Neurol 2008;15:371-376.
Monte TL, Reckziegel ER, Augustin MC, et al. NESSCA validation and responsiveness of several rating scales in Spinocerebellar ataxia type 2. Cerebellum 2017;16:852-858.
Azevedo PB, Rocha AG, Keim LMN, et al. Ophthalmological and neurologic manifestations in pre-clinical and clinical phases of spinocerebellar ataxia type 7. Cerebellum 2019;18:388-396.
Schmitz-Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006;66:1717-1720.
Schmitz-Hubsch T, Fimmers R, Rakowicz M, et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 2010;74:678-684.
Weyer A, Abele M, Schmitz-Hubsch T, et al. Reliability and validity of the scale for the assessment and rating of ataxia: a study in 64 ataxia patients. Mov Disord 2007;22:1633-1637.
Yabe I, Matsushima M, Soma H, Basri R, Sasaki H. Usefulness of the Scale for Assessment and Rating of Ataxia (SARA). J Neurol Sci 2008;266:164-166.
Adanyeguh IM, Perlbarg V, Henry PG, et al. Autosomal dominant cerebellar ataxias: imaging biomarkers with high effect sizes. Neuroimage Clin 2018;19:858-867.
Jacobi H, Hauser TK, Giunti P, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum 2012;11:155-166.
Matsushima A, Yoshida K, Genno H, et al. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias 2015;2:9.
Choi SW, Han N. Evaluation of Ataxia in Mild Ischemic Stroke Patients Using the Scale for the Assessment and Rating of Ataxia (SARA). Ann Rehabil Med 2018;42:375-383.
Meissner WG, Fernagut PO, Dehay B, et al. Multiple system atrophy: recent developments and future perspectives. Mov Disord 2019;34:1629-1642.
Wenning GK, Tison F, Seppi K, et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 2004;19:1391-1402.
Krismer F, Seppi K, Tison F, et al. The unified multiple system atrophy rating scale: intrarater reliability. Mov Disord 2012;27:1683-1685.
Meissner WG, Flabeau O, Perez P, et al. Accuracy of portable polygraphy for the diagnosis of sleep apnea in multiple system atrophy. Sleep Med 2014;15:476-479.
Shah A, Prasad S, Rastogi B, et al. Altered structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features. Eur Radiol 2019;29:2783-2791.
Lieto M, Roca A, Bruzzese D, et al. Longitudinal study of a cohort of MSA-C patients in South Italy: survival and clinical features. Neurol Sci 2019;40:2105-2109.
Assadi M, Leone P, Veloski JJ, Schwartzman RJ, Janson CG, Campellone JV. Validating an ataxia functional composite scale in spinocerebellar ataxia. J Neurol Sci 2008;268:136-139.
Arcuria G, Marcotulli C, Galasso C, Pierelli F, Casali C. 15-White Dots APP-Coo-Test: a reliable touch-screen application for assessing upper limb movement impairment in patients with cerebellar ataxias. J Neurol 2019;266:1611-1622.
Arcuria G, Marcotulli C, Amuso R, et al. Developing an objective evaluating system to quantify the degree of upper limb movement impairment in patients with severe Friedreich's ataxia. Neurol Sci 2020;41:1577-1587.
Tezenas du Montcel S, Charles P, Ribai P, et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 2008;131:1352-1361.
Tanguy Melac A, Mariotti C, Filipovic Pierucci A, et al. Friedreich and dominant ataxias: quantitative differences in cerebellar dysfunction measurements. J Neurol Neurosurg Psychiatry 2018;89:559-565.
Chan E, Charles P, Ribai P, et al. Quantitative assessment of the evolution of cerebellar signs in spinocerebellar ataxias. Mov Disord 2011;26:534-538.
Tezenas du Montcel S, Charles P, Goizet C, et al. Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch Neurol 2012;69:500-508.
Jacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013;12:650-658.
Saute JA, Rieder CR, Castilhos RM, et al. Planning future clinical trials in Machado Joseph disease: lessons from a phase 2 trial. J Neurol Sci 2015;358:72-76.
Gajos KZ, Reinecke K, Donovan M, et al. Computer mouse use captures ataxia and parkinsonism, enabling accurate measurement and detection. Mov Disord 2020;35:354-358.
Schmitz-Hubsch T, Giunti P, Stephenson DA, et al. SCA functional index: a useful compound performance measure for spinocerebellar ataxia. Neurology 2008;71:486-492.
Burk K, Sival DA. Scales for the clinical evaluation of cerebellar disorders. Handb Clin Neurol 2018;154:329-339.
Berry-Kravis E, Lewin F, Wuu J, et al. Tremor and ataxia in fragile X premutation carriers: blinded videotape study. Ann Neurol 2003;53:616-623.
Jacquemont S, Hagerman RJ, Leehey MA, et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 2004;291:460-469.
Rossi M, Perez-Lloret S, Cerquetti D, Merello M. Movement disorders in autosomal dominant cerebellar ataxias: a systematic review. Mov Disord Clin Pract 2014;1:154-160.
Rossi M, Perez-Lloret S, Doldan L, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol 2014;21:607-615.
Filipovic Pierucci A, Mariotti C, Panzeri M, et al. Quantifiable evaluation of cerebellar signs in children. Neurology 2015;84:1225-1232.
Jacobi H, Rakowicz M, Rola R, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum 2013;12:418-428.
Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018;141:248-270.