Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing.


Journal

Current genetics
ISSN: 1432-0983
Titre abrégé: Curr Genet
Pays: United States
ID NLM: 8004904

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 29 06 2020
accepted: 24 09 2020
revised: 08 09 2020
pubmed: 11 10 2020
medline: 7 7 2021
entrez: 10 10 2020
Statut: ppublish

Résumé

Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.

Identifiants

pubmed: 33037902
doi: 10.1007/s00294-020-01114-7
pii: 10.1007/s00294-020-01114-7
doi:

Substances chimiques

Chromatin 0
Histones 0
Silent Information Regulator Proteins, Saccharomyces cerevisiae 0
Histone Methyltransferases EC 2.1.1.-
Histone Deacetylases EC 3.5.1.98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3-17

Subventions

Organisme : Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2015-06727

Références

Ahn S-H, Diaz RL, Grunstein M, Allis CD (2006) Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine. Mol Cell 24:211–220. https://doi.org/10.1016/j.molcel.2006.09.008
doi: 10.1016/j.molcel.2006.09.008 pubmed: 17052455
Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mole Cell Biol 19:229–244. https://doi.org/10.1038/nrm.2017.119
doi: 10.1038/nrm.2017.119
Bedalov A, Hirao M, Posakony J, Nelson M, Simon JA (2003) NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol 23:7044–7054. https://doi.org/10.1128/mcb.23.19.7044-7054.2003
doi: 10.1128/mcb.23.19.7044-7054.2003 pubmed: 12972620 pmcid: 193940
Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci 97:13708–13713. https://doi.org/10.1073/pnas.250477697
doi: 10.1073/pnas.250477697 pubmed: 11095743
Berretta J, Pinskaya M, Morillon A (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S cerevisiae. Genes Dev 22:615–626. https://doi.org/10.1101/gad.458008
doi: 10.1101/gad.458008 pubmed: 18316478 pmcid: 2259031
Boa S, Coert C, Patterton HG (2003) Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression. Yeast 20:827–835. https://doi.org/10.1002/yea.995
doi: 10.1002/yea.995 pubmed: 12845608
Briggs SD et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15:3286–3295. https://doi.org/10.1101/gad.940201
doi: 10.1101/gad.940201 pubmed: 11751634 pmcid: 312847
Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105. https://doi.org/10.1534/genetics.111.135731
doi: 10.1534/genetics.111.135731 pubmed: 22964838 pmcid: 3430547
Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F (2002) Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 12:165–170. https://doi.org/10.1016/s0960-9822(01)00652-2
doi: 10.1016/s0960-9822(01)00652-2 pubmed: 11818070
Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106:18321–18326. https://doi.org/10.1073/pnas.0909641106
doi: 10.1073/pnas.0909641106 pubmed: 19805129 pmcid: 2775344
Bumgarner SL, Neuert G, Voight BF, Symbor-Nagrabska A, Grisafi P, van Oudenaarden A, Fink GR (2012) Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 45:470–482. https://doi.org/10.1016/j.molcel.2011.11.029
doi: 10.1016/j.molcel.2011.11.029 pubmed: 22264825 pmcid: 3288511
Buratowski S, Kim T (2010) The role of cotranscriptional histone methylations. Cold Spring Harb Symp Quant Biol 75:95–102. https://doi.org/10.1101/sqb.2010.75.036
doi: 10.1101/sqb.2010.75.036 pubmed: 21447819
Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S cerevisiae. Cell 131:706–717. https://doi.org/10.1016/j.cell.2007.09.014
doi: 10.1016/j.cell.2007.09.014 pubmed: 18022365
Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, Stutz F (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S cerevisiae. Genes Dev 23:1534–1545. https://doi.org/10.1101/gad.522509
doi: 10.1101/gad.522509 pubmed: 19571181 pmcid: 2704465
Carrozza MJ et al (2005a) Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex Biochimica et Biophysica Acta (BBA). Gene Struct Expres 1731:77–87. https://doi.org/10.1016/j.bbaexp.2005.09.005
doi: 10.1016/j.bbaexp.2005.09.005
Carrozza MJ et al (2005b) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592. https://doi.org/10.1016/j.cell.2005.10.023
doi: 10.1016/j.cell.2005.10.023 pubmed: 16286007
Castelnuovo M et al (2014) Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Res 42:4348–4362. https://doi.org/10.1093/nar/gku100
doi: 10.1093/nar/gku100 pubmed: 24497191 pmcid: 3985671
Celic I, Verreault A, Boeke JD (2008) Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179:1769–1784. https://doi.org/10.1534/genetics.108.088914
doi: 10.1534/genetics.108.088914 pubmed: 18579506 pmcid: 2516057
Chang CR, Wu CS, Hom Y, Gartenberg MR (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19:3031–3042. https://doi.org/10.1101/gad.1356305
doi: 10.1101/gad.1356305 pubmed: 16319193 pmcid: 1315406
Chen X-F et al (2012) The Rpd3 core complex is a chromatin stabilization module. Curr Biol 22:56–63. https://doi.org/10.1016/j.cub.2011.11.042
doi: 10.1016/j.cub.2011.11.042 pubmed: 22177115
Church M, Smith KC, Alhussain MM, Pennings S, Fleming AB (2017) Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Res 45:4413–4430. https://doi.org/10.1093/nar/gkx028
doi: 10.1093/nar/gkx028 pubmed: 28115623 pmcid: 5416777
Cohen TJ, Mallory MJ, Strich R, Yao T-P (2008) Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p Cell integrity pathway eukaryotic. Cell 7:1191–1199. https://doi.org/10.1128/ec.00059-08
doi: 10.1128/ec.00059-08
Dang W et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807. https://doi.org/10.1038/nature08085
doi: 10.1038/nature08085 pubmed: 19516333 pmcid: 2702157
Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158–50162. https://doi.org/10.1074/jbc.M309753200
doi: 10.1074/jbc.M309753200 pubmed: 14525981
De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374. https://doi.org/10.1038/nature02258
doi: 10.1038/nature02258 pubmed: 14737171
DiFiore JV, Ptacek TS, Wang Y, Li B, Simon JM, Strahl BD (2020) Unique and shared roles for histone H3K36 methylation states in transcription regulation functions. Cell Rep 31:107751. https://doi.org/10.1016/j.celrep.2020.107751
doi: 10.1016/j.celrep.2020.107751 pubmed: 32521276 pmcid: 7334899
Dodson AE, Rine J (2015) Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. Elife 4:e05007. https://doi.org/10.7554/eLife.05007
doi: 10.7554/eLife.05007 pubmed: 25581000 pmcid: 4337651
Downey M, Knight B, Vashisht AA, Seller CA, Wohlschlegel JA, Shore D, Toczyski DP (2013) Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 23:1638–1648. https://doi.org/10.1016/j.cub.2013.06.050
doi: 10.1016/j.cub.2013.06.050 pubmed: 23973296 pmcid: 3982851
Downey M et al (2015) Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, Gcn5, and Esa1. Mole Amp Cell Proteomics 14:162–176. https://doi.org/10.1074/mcp.M114.043141
doi: 10.1074/mcp.M114.043141
Ehrentraut S, Weber JM, Dybowski JN, Hoffmann D, Ehrenhofer-Murray AE (2010) Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 107:5522–5527. https://doi.org/10.1073/pnas.0909169107
doi: 10.1073/pnas.0909169107 pubmed: 20133733 pmcid: 2851772
Feldman JL, Peterson CL (2019) Yeast sirtuin family members maintain transcription homeostasis to ensure genome stability. Cell Rep 27:2978–2989.e2975. https://doi.org/10.1016/j.celrep.2019.05.009
doi: 10.1016/j.celrep.2019.05.009 pubmed: 31167142 pmcid: 6640630
Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735. https://doi.org/10.1016/j.molcel.2010.08.015
doi: 10.1016/j.molcel.2010.08.015 pubmed: 20832724 pmcid: 3966075
Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S (2014) The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839:1242–1255. https://doi.org/10.1016/j.bbagrm.2014.07.022
doi: 10.1016/j.bbagrm.2014.07.022 pubmed: 25106892 pmcid: 4316177
Fuchs SM, Kizer KO, Braberg H, Krogan NJ, Strahl BD (2012) RNA polymerase II carboxyl-terminal domain phosphorylation regulates protein stability of the Set2 methyltransferase and histone H3 di- and trimethylation at lysine 36. J Biol Chem 287:3249–3256. https://doi.org/10.1074/jbc.M111.273953
doi: 10.1074/jbc.M111.273953 pubmed: 22157004
Gartenberg MR, Smith JS (2016) The nuts and bolts of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genetics 203:1563–1599. https://doi.org/10.1534/genetics.112.145243
doi: 10.1534/genetics.112.145243 pubmed: 27516616 pmcid: 4981263
Green EM, Mas G, Young NL, Garcia BA, Gozani O (2012) Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nat Struct Mol Biol 19:361–363. https://doi.org/10.1038/nsmb.2252
doi: 10.1038/nsmb.2252 pubmed: 22343720 pmcid: 3334815
Grigat M, Jäschke Y, Kliewe F, Pfeifer M, Walz S, Schüller H-J (2012) Multiple histone deacetylases are recruited by corepressor Sin3 and contribute to gene repression mediated by Opi1 regulator of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mole Gene Genomics 287:461–472. https://doi.org/10.1007/s00438-012-0692-x
doi: 10.1007/s00438-012-0692-x
Guillemette B et al (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7:e1001354. https://doi.org/10.1371/journal.pgen.1001354
doi: 10.1371/journal.pgen.1001354 pubmed: 21483810 pmcid: 3069113
Gupta R, Sadhale PP, Vijayraghavan U (2015) SUB1 plays a negative role during starvation induced sporulation program in Saccharomyces cerevisiae. PLoS ONE 10:e0132350. https://doi.org/10.1371/journal.pone.0132350
doi: 10.1371/journal.pone.0132350 pubmed: 26147804 pmcid: 4492983
Gutbrod MJ, Martienssen RA (2020) Conserved chromosomal functions of RNA interference. Nat Rev Genet 21:311–331. https://doi.org/10.1038/s41576-019-0203-6
doi: 10.1038/s41576-019-0203-6 pubmed: 32051563
Ha SD et al (2019) Transcription-dependent targeting of Hda1C to hyperactive genes mediates H4-specific deacetylation in yeast. Nat Commun 10:4270. https://doi.org/10.1038/s41467-019-12077-w
doi: 10.1038/s41467-019-12077-w pubmed: 31537788 pmcid: 6753149
Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–415
doi: 10.1016/S0092-8674(04)00118-7
Hickman MA, Rusche LN (2007) Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. PLOS Genet 3:e126. https://doi.org/10.1371/journal.pgen.0030126
doi: 10.1371/journal.pgen.0030126 pubmed: 17676954 pmcid: 1937012
Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D (2002) Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22:4167–4180. https://doi.org/10.1128/mcb.22.12.4167-4180.2002
doi: 10.1128/mcb.22.12.4167-4180.2002 pubmed: 12024030 pmcid: 133845
House NCM, Yang JH, Walsh SC, Moy JM, Freudenreich CH (2014) NuA4 initiates dynamic histone H4 acetylation to promote high-fidelity sister chromatid recombination at postreplication gaps. Mol Cell 55:818–828. https://doi.org/10.1016/j.molcel.2014.07.007
doi: 10.1016/j.molcel.2014.07.007 pubmed: 25132173 pmcid: 4169719
Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M (2008) A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 32:685–695. https://doi.org/10.1016/j.molcel.2008.09.027
doi: 10.1016/j.molcel.2008.09.027 pubmed: 19061643
Hu Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408. https://doi.org/10.1101/gad.233221.113
doi: 10.1101/gad.233221.113 pubmed: 24532716 pmcid: 3937517
Humphrey EL, Shamji AF, Bernstein BE, Schreiber SL (2004) Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol 11:295–299. https://doi.org/10.1016/j.chembiol.2004.03.001
doi: 10.1016/j.chembiol.2004.03.001 pubmed: 15123258
Ide S, Saka K, Kobayashi T (2013) Rtt109 prevents hyper-amplification of ribosomal RNA genes through histone modification in budding yeast. PLOS Genet 9:e1003410. https://doi.org/10.1371/journal.pgen.1003410
doi: 10.1371/journal.pgen.1003410 pubmed: 23593017 pmcid: 3616922
Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800. https://doi.org/10.1038/35001622
doi: 10.1038/35001622 pubmed: 10693811
Ingvarsdottir K et al (2005) H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol 25:1162–1172. https://doi.org/10.1128/MCB.25.3.1162-1172.2005
doi: 10.1128/MCB.25.3.1162-1172.2005 pubmed: 15657441 pmcid: 544016
Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J (2015) Regulation of ribosomal DNA amplification by the TOR pathway. Proc Natl Acad Sci U S A 112:9674–9679. https://doi.org/10.1073/pnas.1505015112
doi: 10.1073/pnas.1505015112 pubmed: 26195783 pmcid: 4534215
Jaiswal D, Turniansky R, Green EM (2017) Choose your own adventure: the role of histone modifications in yeast cell fate. J Mol Biol 429:1946–1957. https://doi.org/10.1016/j.jmb.2016.10.018
doi: 10.1016/j.jmb.2016.10.018 pubmed: 27769718
Jaiswal D et al (2017) Repression of middle sporulation genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 complex Is maintained by Set1 and H3K4 Methylation G3. Bethesda 7:3971–3982. https://doi.org/10.1534/g3.117.300150
doi: 10.1534/g3.117.300150
James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin S-J (2019) The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD+ biosynthesis in budding yeast. J Biol Chem 294:5562–5575. https://doi.org/10.1074/jbc.RA118.006987
doi: 10.1074/jbc.RA118.006987 pubmed: 30760525 pmcid: 6462523
Jangid RK, Kelkar A, Muley VY, Galande S (2018) Bidirectional promoters exhibit characteristic chromatin modification signature associated with transcription elongation in both sense and antisense directions. BMC Genomics 19:313. https://doi.org/10.1186/s12864-018-4697-7
doi: 10.1186/s12864-018-4697-7 pubmed: 29716520 pmcid: 5930751
Jezek M et al (2017) The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 12:93–104. https://doi.org/10.1080/15592294.2016.1265712
doi: 10.1080/15592294.2016.1265712 pubmed: 27911222
Kadyrova LY et al (2013) A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability. PLoS Genet 9:e1003899. https://doi.org/10.1371/journal.pgen.1003899
doi: 10.1371/journal.pgen.1003899 pubmed: 24204308 pmcid: 3812082
Kang WK, Devare M, Kim J-Y (2017) HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae. J Microbiol 55:123–129. https://doi.org/10.1007/s12275-017-6535-z
doi: 10.1007/s12275-017-6535-z pubmed: 28120189
Keogh M-C et al (2005) Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3. Complex Cell 123:593–605. https://doi.org/10.1016/j.cell.2005.10.025
doi: 10.1016/j.cell.2005.10.025 pubmed: 16286008
Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 137:259–272. https://doi.org/10.1016/j.cell.2009.02.045
doi: 10.1016/j.cell.2009.02.045 pubmed: 19379692 pmcid: 2802783
Kim J-H, Saraf A, Florens L, Washburn M, Workman JL (2010) Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24:2766–2771. https://doi.org/10.1101/gad.1979710
doi: 10.1101/gad.1979710 pubmed: 21159817 pmcid: 3003194
Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316. https://doi.org/10.1128/mcb.25.8.3305-3316.2005
doi: 10.1128/mcb.25.8.3305-3316.2005 pubmed: 15798214 pmcid: 1069628
Knott SRV, Viggiani CJ, Tavaré S, Aparicio OM (2009) Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23:1077–1090. https://doi.org/10.1101/gad.1784309
doi: 10.1101/gad.1784309 pubmed: 19417103 pmcid: 2682954
Kothiwal D, Laloraya S (2019) A SIR-independent role for cohesin in subtelomeric silencing and organization. Proc Natl Acad Sci U S A 116:5659–5664. https://doi.org/10.1073/pnas.1816582116
doi: 10.1073/pnas.1816582116 pubmed: 30842278 pmcid: 6431164
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y (2018) Centromeres license the mitotic condensation of yeast chromosome arms. Cell 175:780–795.e715. https://doi.org/10.1016/j.cell.2018.09.012
doi: 10.1016/j.cell.2018.09.012 pubmed: 30318142 pmcid: 6197839
Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254. https://doi.org/10.1038/ng907
doi: 10.1038/ng907 pubmed: 12089521
Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424. https://doi.org/10.1074/jbc.C200366200
doi: 10.1074/jbc.C200366200 pubmed: 12097318
Laible G et al (1997) Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at. cerevisiae telomeres. EMBO J 16:3219–3232. https://doi.org/10.1093/emboj/16.11.3219
doi: 10.1093/emboj/16.11.3219 pubmed: 9214638 pmcid: 1169939
Lamming DW et al (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864. https://doi.org/10.1126/science.1113611
doi: 10.1126/science.1113611 pubmed: 16051752
Landry J, Sutton A, Hesman T, Min J, Xu RM, Johnston M, Sternglanz R (2003) Set2-catalyzed methylation of histone H3 represses basal expression of GAL4 in Saccharomyces cerevisiae. Mol Cell Biol 23:5972–5978. https://doi.org/10.1128/mcb.23.17.5972-5978.2003
doi: 10.1128/mcb.23.17.5972-5978.2003 pubmed: 12917322 pmcid: 180946
Lardenois A et al (2015) Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mole Gene Genomics 290:2031–2046. https://doi.org/10.1007/s00438-015-1051-5
doi: 10.1007/s00438-015-1051-5
Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278:8897–8903. https://doi.org/10.1074/jbc.M212134200
doi: 10.1074/jbc.M212134200 pubmed: 12511561
Li M, Petteys BJ, McClure JM, Valsakumar V, Bekiranov S, Frank EL, Smith JS (2010) Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 30:3329–3341. https://doi.org/10.1128/MCB.01590-09
doi: 10.1128/MCB.01590-09 pubmed: 20439498 pmcid: 2897578
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS (2013) Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 14:R48–R48. https://doi.org/10.1186/gb-2013-14-5-r48
doi: 10.1186/gb-2013-14-5-r48 pubmed: 23710766 pmcid: 4053722
Li S, Yue Z, Tanaka TU (2017) Smc3 deacetylation by Hos1 facilitates efficient dissolution of sister chromatid cohesion during early anaphase. Mole Cell 68:605–614.e604. https://doi.org/10.1016/j.molcel.2017.10.009
doi: 10.1016/j.molcel.2017.10.009
Liu IC, Chiu SW, Lee HY, Leu JY (2012) The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 23:1231–1242. https://doi.org/10.1091/mbc.E11-09-0752
doi: 10.1091/mbc.E11-09-0752 pubmed: 22337769 pmcid: 3315813
Maas NL, Miller KM, DeFazio LG, Toczyski DP (2006) Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell 23:109–119. https://doi.org/10.1016/j.molcel.2006.06.006
doi: 10.1016/j.molcel.2006.06.006 pubmed: 16818235
Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84:437–443. https://doi.org/10.1139/o06-073
doi: 10.1139/o06-073 pubmed: 16936817
Margaritis T et al (2012) Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3'-end antisense transcription. PLoS Genet 8:e1002952. https://doi.org/10.1371/journal.pgen.1002952
doi: 10.1371/journal.pgen.1002952 pubmed: 23028359 pmcid: 3447963
Martienssen R, Moazed D (2015) RNAi and heterochromatin assembly. Cold Spring Harbor Biol 7:a019323. https://doi.org/10.1101/cshperspect.a019323
doi: 10.1101/cshperspect.a019323
Martin GM et al (2014) Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics 9:513–522. https://doi.org/10.4161/epi.27645
doi: 10.4161/epi.27645 pubmed: 24442241 pmcid: 4121362
McDaniel SL, Strahl BD (2017) Shaping the cellular landscape with Set2/SETD2. Methylation 74:3317–3334. https://doi.org/10.1007/s00018-017-2517-x
doi: 10.1007/s00018-017-2517-x
McDaniel SL et al (2017) H3K36 methylation regulates nutrient stress response in Saccharomyces cerevisiae by enforcing transcriptional fidelity. Cell Rep 19:2371–2382. https://doi.org/10.1016/j.celrep.2017.05.057
doi: 10.1016/j.celrep.2017.05.057 pubmed: 28614721 pmcid: 5528882
McKnight JN, Boerma JW, Breeden LL, Tsukiyama T (2015) Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 59:732–743. https://doi.org/10.1016/j.molcel.2015.07.014
doi: 10.1016/j.molcel.2015.07.014 pubmed: 26300265 pmcid: 4560983
Miles S, Li L, Davison J, Breeden LL (2013) Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the Quiescent State. PLoS Genet 9:e1003854. https://doi.org/10.1371/journal.pgen.1003854
doi: 10.1371/journal.pgen.1003854 pubmed: 24204289 pmcid: 3814307
Mueller JE, Canze M, Bryk M (2006) The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics 173:557–567. https://doi.org/10.1534/genetics.106.055400
doi: 10.1534/genetics.106.055400 pubmed: 16582434 pmcid: 1526511
Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A 99:90–94. https://doi.org/10.1073/pnas.221596698
doi: 10.1073/pnas.221596698 pubmed: 11752412
Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719. https://doi.org/10.1016/s1097-2765(03)00092-3
doi: 10.1016/s1097-2765(03)00092-3 pubmed: 12667453
Nislow C, Ray E, Pillus L (1997) SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8:2421–2436. https://doi.org/10.1091/mbc.8.12.2421
doi: 10.1091/mbc.8.12.2421 pubmed: 9398665 pmcid: 25717
Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2:e1600584. https://doi.org/10.1126/sciadv.1600584
doi: 10.1126/sciadv.1600584 pubmed: 27482540 pmcid: 4966880
Pal S, Postnikoff SD, Chavez M, Tyler JK (2018) Impaired cohesion and homologous recombination during replicative aging in budding yeast. Sci Adv 4:eaa0236. https://doi.org/10.1126/sciadv.aaq0236
doi: 10.1126/sciadv.aaq0236
Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D (2002) Cti6, a PHD Domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305. https://doi.org/10.1016/S1097-2765(02)00545-2
doi: 10.1016/S1097-2765(02)00545-2 pubmed: 12086626
Parker S et al (2018) Large-scale profiling of noncoding RNA function in yeast. PLoS Genet 14:e1007253. https://doi.org/10.1371/journal.pgen.1007253
doi: 10.1371/journal.pgen.1007253 pubmed: 29529031 pmcid: 5864082
Parnell EJ, Stillman DJ (2019) Multiple negative regulators restrict recruitment of the SWI/SNF chromatin remodeler to the HO Promoter in Saccharomyces cerevisiae. Genetics 212:1181–1204. https://doi.org/10.1534/genetics.119.302359
doi: 10.1534/genetics.119.302359 pubmed: 31167839 pmcid: 6707452
Pérez-Martínez ME, Benet M, Alepuz P, Tordera V (2020) Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 15:251–271. https://doi.org/10.1080/15592294.2019.1664229
doi: 10.1080/15592294.2019.1664229 pubmed: 31512982
Perrod S, Cockell MM, Laroche T, Renauld H, Ducrest A-L, Bonnard C, Gasser SM (2001) A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 20:197–209. https://doi.org/10.1093/emboj/20.1.197
doi: 10.1093/emboj/20.1.197 pubmed: 11226170 pmcid: 140183
Petruk S et al (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933. https://doi.org/10.1016/j.cell.2012.06.046
doi: 10.1016/j.cell.2012.06.046 pubmed: 22921915 pmcid: 3432699
Petruk S, Black KL, Kovermann SK, Brock HW, Mazo A (2013) Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat Commun 4:2841. https://doi.org/10.1038/ncomms3841
doi: 10.1038/ncomms3841 pubmed: 24276476 pmcid: 3874871
Pijnappel WW et al (2001) The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15:2991–3004. https://doi.org/10.1101/gad.207401
doi: 10.1101/gad.207401 pubmed: 11711434 pmcid: 312828
Pinskaya M, Gourvennec S, Morillon A (2009) H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation. EMBO J 28:1697–1707. https://doi.org/10.1038/emboj.2009.108
doi: 10.1038/emboj.2009.108 pubmed: 19407817 pmcid: 2699354
Pokholok DK et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527. https://doi.org/10.1016/j.cell.2005.06.026
doi: 10.1016/j.cell.2005.06.026 pubmed: 16122420
Rao B, Shibata Y, Strahl BD, Lieb JD (2005) Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 25:9447–9459. https://doi.org/10.1128/mcb.25.21.9447-9459.2005
doi: 10.1128/mcb.25.21.9447-9459.2005 pubmed: 16227595 pmcid: 1265832
Reinke A, Chen JC, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281:31616–31626. https://doi.org/10.1074/jbc.M603107200
doi: 10.1074/jbc.M603107200 pubmed: 16923813
Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446
doi: 10.1016/S0092-8674(02)00746-8
Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–7148. https://doi.org/10.1093/emboj/20.24.7137
doi: 10.1093/emboj/20.24.7137 pubmed: 11742990 pmcid: 125774
Rohde JR, Cardenas ME (2003) The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23:629–635. https://doi.org/10.1128/mcb.23.2.629-635.2003
doi: 10.1128/mcb.23.2.629-635.2003 pubmed: 12509460 pmcid: 151550
Rowlands H, Shaban K, Cheng A, Foster B, Yankulov K (2019a) Dysfunctional CAF-I reveals its role in cell cycle progression and differential regulation of gene silencing. Cell Cycle 18:3223–3236. https://doi.org/10.1080/15384101.2019.1673100
doi: 10.1080/15384101.2019.1673100 pubmed: 31564230 pmcid: 6816422
Rowlands H, Shaban K, Foster B, Proteau Y, Yankulov K (2019b) Histone chaperones and the Rrm3p helicase regulate flocculation in S cerevisiae. Epigenetics Chrom 12:56. https://doi.org/10.1186/s13072-019-0303-8
doi: 10.1186/s13072-019-0303-8
Ruiz-Roig C, Viéitez C, Posas F, De Nadal E (2010) The Rpd3L HDAC complex is essential for the heat stress response in yeast. Mole Microbiol 76:1049–1062. https://doi.org/10.1111/j.1365-2958.2010.07167.x
doi: 10.1111/j.1365-2958.2010.07167.x
Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93:14503–14508. https://doi.org/10.1073/pnas.93.25.14503
doi: 10.1073/pnas.93.25.14503 pubmed: 8962081 pmcid: 26162
Rusche LN, Kirchmaier AL, Rine J (2002) Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13:2207–2222. https://doi.org/10.1091/mbc.E02-03-0175
doi: 10.1091/mbc.E02-03-0175 pubmed: 12134062 pmcid: 117306
Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516. https://doi.org/10.1146/annurev.biochem.72.121801.161547
doi: 10.1146/annurev.biochem.72.121801.161547 pubmed: 12676793
Santos-Rosa H et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411. https://doi.org/10.1038/nature01080
doi: 10.1038/nature01080 pubmed: 12353038
Sen P et al (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29:1362–1376. https://doi.org/10.1101/gad.263707.115
doi: 10.1101/gad.263707.115 pubmed: 26159996 pmcid: 4511212
Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839. https://doi.org/10.1016/j.cell.2016.07.050
doi: 10.1016/j.cell.2016.07.050 pubmed: 27518561 pmcid: 27518561
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV (2007) Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 27:2037–2047. https://doi.org/10.1128/MCB.02297-06
doi: 10.1128/MCB.02297-06 pubmed: 17210643 pmcid: 1820486
Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor Biol 6:a018713. https://doi.org/10.1101/cshperspect.a018713
doi: 10.1101/cshperspect.a018713
Sharma VM, Tomar RS, Dempsey AE, Reese JC (2007) Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mole Cell Biol 27:3199–3210. https://doi.org/10.1128/mcb.02311-06
doi: 10.1128/mcb.02311-06
Shi D et al (2020) The acetyltransferase Eco1 elicits cohesin dimerization during S phase. J Biol Chem. https://doi.org/10.1074/jbc.RA120.013102
doi: 10.1074/jbc.RA120.013102 pubmed: 33460931 pmcid: 7606687
Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95. https://doi.org/10.1146/annurev-biochem-051710-134100
doi: 10.1146/annurev-biochem-051710-134100 pubmed: 22663077 pmcid: 4010150
Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP (2003) Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 31:3033–3037. https://doi.org/10.1093/nar/gkg425
doi: 10.1093/nar/gkg425 pubmed: 12799429 pmcid: 162329
Strahl BD et al (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22:1298–1306
doi: 10.1128/MCB.22.5.1298-1306.2002
Suka N, Suka Y, Carmen AA, Wu J, Grunstein M (2001) Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8:473–479
doi: 10.1016/S1097-2765(01)00301-X
Suka N, Luo K, Grunstein M (2002) Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32:378–383. https://doi.org/10.1038/ng1017
doi: 10.1038/ng1017 pubmed: 12379856
Takahata S, Yu Y, Stillman DJ (2009) The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. Embo j 28:3378–3389. https://doi.org/10.1038/emboj.2009.270
doi: 10.1038/emboj.2009.270 pubmed: 19745812 pmcid: 2776103
Tamburini BA, Tyler JK (2005) Localized Histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25:4903–4913. https://doi.org/10.1128/mcb.25.12.4903-4913.2005
doi: 10.1128/mcb.25.12.4903-4913.2005 pubmed: 15923609 pmcid: 1140608
Tanny JC, Kirkpatrick DS, Gerber SA, Gygi SP, Moazed D (2004) Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol 24:6931–6946
doi: 10.1128/MCB.24.16.6931-6946.2004
Thurtle-Schmidt DM, Dodson AE, Rine J (2016) Histone deacetylases with antagonistic roles in Saccharomyces Cerevisiae heterochromatin formation. Genetics 204:177–190. https://doi.org/10.1534/genetics.116.190835
doi: 10.1534/genetics.116.190835 pubmed: 27489001 pmcid: 5012384
Tkach JM et al (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14:966–976. https://doi.org/10.1038/ncb2549
doi: 10.1038/ncb2549 pubmed: 22842922 pmcid: 3434236
Tran K, Green EM (2019) SET domains and stress: uncovering new functions for yeast. Set4 65:643–648. https://doi.org/10.1007/s00294-018-0917-6
doi: 10.1007/s00294-018-0917-6
Tran K, Jethmalani Y, Jaiswal D, Green EM (2018) Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast. J Biol Chem 293:14429–14443. https://doi.org/10.1074/jbc.RA118.003078
doi: 10.1074/jbc.RA118.003078 pubmed: 30082318 pmcid: 6139553
van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756. https://doi.org/10.1016/s0092-8674(02)00759-6
doi: 10.1016/s0092-8674(02)00759-6 pubmed: 12086673
van Werven FJ et al (2012) Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150:1170–1181. https://doi.org/10.1016/j.cell.2012.06.049
doi: 10.1016/j.cell.2012.06.049 pubmed: 3472370 pmcid: 3472370
Van HT, Santos MA (2018) Histone modifications and the DNA double-strand break response. Cell Cycle 17:2399–2410. https://doi.org/10.1080/15384101.2018.1542899
doi: 10.1080/15384101.2018.1542899 pubmed: 30394812 pmcid: 6342081
Venkatesh S, Li H, Gogol MM, Workman JL (2016) Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat Commun 7:13610. https://doi.org/10.1038/ncomms13610
doi: 10.1038/ncomms13610 pubmed: 27892455 pmcid: 5133703
Wang M, Collins RN (2014) A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint. Mol Biol Cell 25:2720–2734. https://doi.org/10.1091/mbc.E13-10-0619
doi: 10.1091/mbc.E13-10-0619 pubmed: 25057019 pmcid: 4161508
Wilkins BJ et al (2014) A Cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. https://doi.org/10.1126/science.1244508
doi: 10.1126/science.1244508 pubmed: 24385627
Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525–2539. https://doi.org/10.1101/gad.179275.111
doi: 10.1101/gad.179275.111 pubmed: 22156212 pmcid: 3243062
Woo H, Dam Ha S, Lee SB, Buratowski S, Kim T (2017a) Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med 49:e326–e326. https://doi.org/10.1038/emm.2017.19
doi: 10.1038/emm.2017.19 pubmed: 28450734 pmcid: 6130219
Woo H, Dam Ha S, Lee SB, Buratowski S, Kim T (2017b) Modulation of gene expression dynamics by co-transcriptional histone methylations. Exper Mole Med 49:e326. https://doi.org/10.1038/emm.2017.19
doi: 10.1038/emm.2017.19
Wu J, Carmen AA, Kobayashi R, Suka N, Grunstein M (2001a) HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc Natl Acad Sci U S A 98:4391–4396. https://doi.org/10.1073/pnas.081560698
doi: 10.1073/pnas.081560698 pubmed: 11287668 pmcid: 31845
Wu J, Suka N, Carlson M, Grunstein M (2001b) TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126. https://doi.org/10.1016/s1097-2765(01)00160-5
doi: 10.1016/s1097-2765(01)00160-5 pubmed: 11172717
Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK (1999) Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. Embo j 18:6448–6454. https://doi.org/10.1093/emboj/18.22.6448
doi: 10.1093/emboj/18.22.6448 pubmed: 10562556 pmcid: 1171707
Yamashita A, Shichino Y, Yamamoto M (2016) The long non-coding RNA world in yeasts. Biochim Biophys Acta 1859:147–154. https://doi.org/10.1016/j.bbagrm.2015.08.003
doi: 10.1016/j.bbagrm.2015.08.003 pubmed: 26265144
Yang B, Miller A, Kirchmaier AL (2008) HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin. Mol Biol Cell 19:4993–5005. https://doi.org/10.1091/mbc.e08-05-0524
doi: 10.1091/mbc.e08-05-0524 pubmed: 18799617 pmcid: 2575165
Yeheskely-Hayon D, Kotler A, Stark M, Hashimshony T, Sagee S, Kassir Y (2013) The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast. PLoS ONE 8:e85088. https://doi.org/10.1371/journal.pone.0085088
doi: 10.1371/journal.pone.0085088 pubmed: 24358376 pmcid: 3866184
Zhang X, Huang Y, Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72:4257–4272. https://doi.org/10.1007/s00018-015-2001-4
doi: 10.1007/s00018-015-2001-4 pubmed: 26227335
Zhou J, Zhou BO, Lenzmeier BA, Zhou JQ (2009) Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 37:3699–3713. https://doi.org/10.1093/nar/gkp233
doi: 10.1093/nar/gkp233 pubmed: 19372273 pmcid: 2699518

Auteurs

Safia Mahabub Sauty (SM)

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.

Kholoud Shaban (K)

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.

Krassimir Yankulov (K)

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada. yankulov@uoguelph.ca.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair

Classifications MeSH