Two subsets of stem-like CD8


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
12 2020
Historique:
received: 21 04 2020
accepted: 14 08 2020
pubmed: 14 10 2020
medline: 16 2 2021
entrez: 13 10 2020
Statut: ppublish

Résumé

T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8

Identifiants

pubmed: 33046887
doi: 10.1038/s41590-020-0791-5
pii: 10.1038/s41590-020-0791-5
pmc: PMC7610790
mid: EMS117985
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1552-1562

Subventions

Organisme : Wellcome Trust
ID : 100326
Pays : United Kingdom
Organisme : European Research Council
ID : 640511
Pays : International
Organisme : Cancer Research UK
ID : C17199/A18246/A29202
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 100326/Z/12/Z
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Références

Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).
pubmed: 12001996
Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).
pubmed: 28060797 pmcid: 6354775
Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8
pubmed: 31810790
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).
pubmed: 21926977 pmcid: 3192229
Biasco, L. et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci. Transl. Med. 7, 273ra13 (2015).
pubmed: 25653219
Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).
pubmed: 24258910
Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8
pubmed: 25035956
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
pubmed: 21739672
Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).
pubmed: 22623779 pmcid: 3421680
Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).
pubmed: 27521269 pmcid: 5119632
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).
pubmed: 28514453 pmcid: 5693219
Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).
pubmed: 27789799 pmcid: 5497589
Im, S. J. et al. Defining CD8
pubmed: 27501248 pmcid: 5297183
Leong, Y. A. et al. CXCR5
pubmed: 27487330
Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8
pubmed: 27533016
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8
pubmed: 30154266 pmcid: 6170179
He, R. et al. Follicular CXCR5-expressing CD8
pubmed: 27501245
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).
pubmed: 30388456 pmcid: 6641984
Siddiqui, I. et al. Intratumoral Tcf1
pubmed: 30635237
Miller, B. C. et al. Subsets of exhausted CD8
pubmed: 30778252 pmcid: 6673650
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).
Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161
pubmed: 21084709
Lugli, E. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013).
pubmed: 23281401 pmcid: 3561805
Oberdoerffer, S. et al. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686–691 (2008).
pubmed: 18669861 pmcid: 2791692
Lugli, E. et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8, 33–42 (2013).
pubmed: 23222456
Stephen, T. L. et al. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. Immunity 46, 51–64 (2017).
pubmed: 28099864 pmcid: 5336605
Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8
pubmed: 31209400 pmcid: 6588409
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
pubmed: 31207605
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).
pubmed: 31207604
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8
pubmed: 31207603 pmcid: 6713202
Wang, X. et al. TOX promotes the exhaustion of antitumor CD8
pubmed: 31173813
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8
pubmed: 31152140
Li, J., He, Y., Hao, J., Ni, L. & Dong, C. High levels of Eomes promote exhaustion of anti-tumor CD8
pubmed: 30619337 pmcid: 6305494
Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).
pubmed: 26139534 pmcid: 4551351
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8
pubmed: 19525962 pmcid: 2707501
Kondo, T. et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat. Commun. 8, 15338 (2017).
pubmed: 28530241 pmcid: 5458121
Widjaja, C. E. et al. Proteasome activity regulates CD8
pubmed: 28846070 pmcid: 5617668
Yang, Z. Z. et al. TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 28, 1872–1884 (2014).
pubmed: 24569779 pmcid: 4145058
Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).
pubmed: 30923193
Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8
pubmed: 29379213 pmcid: 6327307
Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8
pubmed: 23159438 pmcid: 3749234
Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1
pubmed: 29892065 pmcid: 6110381
Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).
pubmed: 27455951 pmcid: 4995073
Fuertes Marraco, S. A. et al. Long-lasting stem cell–like memory CD8
pubmed: 25855494
Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).
pubmed: 29236685 pmcid: 6037316
Price, D. A. et al. Avidity for antigen shapes clonal dominance in CD8
pubmed: 16287711 pmcid: 2212993
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).
pubmed: 31570879 pmcid: 7286441
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).
pubmed: 5484795 pmcid: 5484795
Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).
pubmed: 5568784 pmcid: 5568784
West, E. E. et al. Tight regulation of memory CD8
pubmed: 21856186 pmcid: 3241982
Lugli, E. et al. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques. Blood 118, 2520–2529 (2011).
pubmed: 21757617 pmcid: 3167360
Roberto, A. et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 125, 2855–2864 (2015).
pubmed: 25742699 pmcid: 4424633
Falcone, L. & Casucci, M. Exploiting secreted luciferases to monitor tumor progression in vivo. Methods Mol. Biol. 1393, 105–111 (2016).
pubmed: 27033220
Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).
pubmed: 31160786
Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).
pubmed: 23748502 pmcid: 3796952
Bakker, A. H. et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc. Natl Acad. Sci. USA 105, 3825–3830 (2008).
pubmed: 18308940
Simoni, Y. et al. Bystander CD8
pubmed: 29769722
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923 pmcid: 4430369
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 4402510 pmcid: 4402510
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669 pmcid: 22257669
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 19505943
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).
pubmed: 17908935 pmcid: 1993879
Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).
pubmed: 24793455
Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).
pubmed: 25924071
Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).
pubmed: 26606115 pmcid: 4659587

Auteurs

Giovanni Galletti (G)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Gabriele De Simone (G)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Emilia M C Mazza (EMC)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Simone Puccio (S)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Claudia Mezzanotte (C)

Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Timothy M Bi (TM)

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

Alexey N Davydov (AN)

Central European Institute of Technology, Brno, Czech Republic.

Maria Metsger (M)

Central European Institute of Technology, Brno, Czech Republic.

Eloise Scamardella (E)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Giorgia Alvisi (G)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Federica De Paoli (F)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Veronica Zanon (V)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Alice Scarpa (A)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Barbara Camisa (B)

Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Federico S Colombo (FS)

Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Achille Anselmo (A)

Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Clelia Peano (C)

Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy.
Genomic Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.

Sara Polletti (S)

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

Domenico Mavilio (D)

Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.
Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.

Luca Gattinoni (L)

Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
Regensburg Center for Interventional Immunology, Regensburg, Germany.
University of Regensburg, Regensburg, Germany.

Shannon K Boi (SK)

St. Jude Children's Research Hospital, Memphis, TN, USA.

Benjamin A Youngblood (BA)

St. Jude Children's Research Hospital, Memphis, TN, USA.

Rhiannon E Jones (RE)

Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK.

Duncan M Baird (DM)

Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK.

Emma Gostick (E)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.

Sian Llewellyn-Lacey (S)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.

Kristin Ladell (K)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.

David A Price (DA)

Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK.

Dmitriy M Chudakov (DM)

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
Pirogov Russian National Research Medical University, Moscow, Russia.
Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.

Evan W Newell (EW)

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

Monica Casucci (M)

Innovative Immunotherapies Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Enrico Lugli (E)

Laboratory of Translational Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy. enrico.lugli@humanitasresearch.it.
Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy. enrico.lugli@humanitasresearch.it.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH