Two subsets of stem-like CD8
Animals
Biomarkers
CD8-Positive T-Lymphocytes
/ immunology
Cell Differentiation
/ immunology
Computational Biology
/ methods
Gene Expression Profiling
High-Throughput Nucleotide Sequencing
Humans
Immunologic Memory
Immunophenotyping
Lymphoid Progenitor Cells
/ cytology
Mice
T-Lymphocyte Subsets
/ immunology
Telomere Homeostasis
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
21
04
2020
accepted:
14
08
2020
pubmed:
14
10
2020
medline:
16
2
2021
entrez:
13
10
2020
Statut:
ppublish
Résumé
T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8
Identifiants
pubmed: 33046887
doi: 10.1038/s41590-020-0791-5
pii: 10.1038/s41590-020-0791-5
pmc: PMC7610790
mid: EMS117985
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1552-1562Subventions
Organisme : Wellcome Trust
ID : 100326
Pays : United Kingdom
Organisme : European Research Council
ID : 640511
Pays : International
Organisme : Cancer Research UK
ID : C17199/A18246/A29202
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 100326/Z/12/Z
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Références
Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).
pubmed: 12001996
Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).
pubmed: 28060797
pmcid: 6354775
Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8
pubmed: 31810790
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).
pubmed: 21926977
pmcid: 3192229
Biasco, L. et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci. Transl. Med. 7, 273ra13 (2015).
pubmed: 25653219
Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).
pubmed: 24258910
Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8
pubmed: 25035956
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
pubmed: 21739672
Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).
pubmed: 22623779
pmcid: 3421680
Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).
pubmed: 27521269
pmcid: 5119632
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).
pubmed: 28514453
pmcid: 5693219
Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).
pubmed: 27789799
pmcid: 5497589
Im, S. J. et al. Defining CD8
pubmed: 27501248
pmcid: 5297183
Leong, Y. A. et al. CXCR5
pubmed: 27487330
Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8
pubmed: 27533016
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8
pubmed: 30154266
pmcid: 6170179
He, R. et al. Follicular CXCR5-expressing CD8
pubmed: 27501245
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).
pubmed: 30388456
pmcid: 6641984
Siddiqui, I. et al. Intratumoral Tcf1
pubmed: 30635237
Miller, B. C. et al. Subsets of exhausted CD8
pubmed: 30778252
pmcid: 6673650
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).
Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161
pubmed: 21084709
Lugli, E. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013).
pubmed: 23281401
pmcid: 3561805
Oberdoerffer, S. et al. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321, 686–691 (2008).
pubmed: 18669861
pmcid: 2791692
Lugli, E. et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8, 33–42 (2013).
pubmed: 23222456
Stephen, T. L. et al. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. Immunity 46, 51–64 (2017).
pubmed: 28099864
pmcid: 5336605
Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8
pubmed: 31209400
pmcid: 6588409
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
pubmed: 31207605
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).
pubmed: 31207604
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8
pubmed: 31207603
pmcid: 6713202
Wang, X. et al. TOX promotes the exhaustion of antitumor CD8
pubmed: 31173813
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8
pubmed: 31152140
Li, J., He, Y., Hao, J., Ni, L. & Dong, C. High levels of Eomes promote exhaustion of anti-tumor CD8
pubmed: 30619337
pmcid: 6305494
Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).
pubmed: 26139534
pmcid: 4551351
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8
pubmed: 19525962
pmcid: 2707501
Kondo, T. et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat. Commun. 8, 15338 (2017).
pubmed: 28530241
pmcid: 5458121
Widjaja, C. E. et al. Proteasome activity regulates CD8
pubmed: 28846070
pmcid: 5617668
Yang, Z. Z. et al. TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 28, 1872–1884 (2014).
pubmed: 24569779
pmcid: 4145058
Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).
pubmed: 30923193
Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8
pubmed: 29379213
pmcid: 6327307
Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8
pubmed: 23159438
pmcid: 3749234
Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1
pubmed: 29892065
pmcid: 6110381
Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).
pubmed: 27455951
pmcid: 4995073
Fuertes Marraco, S. A. et al. Long-lasting stem cell–like memory CD8
pubmed: 25855494
Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).
pubmed: 29236685
pmcid: 6037316
Price, D. A. et al. Avidity for antigen shapes clonal dominance in CD8
pubmed: 16287711
pmcid: 2212993
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).
pubmed: 31570879
pmcid: 7286441
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).
pubmed: 5484795
pmcid: 5484795
Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).
pubmed: 5568784
pmcid: 5568784
West, E. E. et al. Tight regulation of memory CD8
pubmed: 21856186
pmcid: 3241982
Lugli, E. et al. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques. Blood 118, 2520–2529 (2011).
pubmed: 21757617
pmcid: 3167360
Roberto, A. et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 125, 2855–2864 (2015).
pubmed: 25742699
pmcid: 4424633
Falcone, L. & Casucci, M. Exploiting secreted luciferases to monitor tumor progression in vivo. Methods Mol. Biol. 1393, 105–111 (2016).
pubmed: 27033220
Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).
pubmed: 31160786
Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).
pubmed: 23748502
pmcid: 3796952
Bakker, A. H. et al. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc. Natl Acad. Sci. USA 105, 3825–3830 (2008).
pubmed: 18308940
Simoni, Y. et al. Bystander CD8
pubmed: 29769722
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923
pmcid: 4430369
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 4402510
pmcid: 4402510
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
pubmed: 22257669
pmcid: 22257669
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 19505943
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).
pubmed: 17908935
pmcid: 1993879
Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).
pubmed: 24793455
Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).
pubmed: 25924071
Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).
pubmed: 26606115
pmcid: 4659587