A systematic review of monogenic etiologies of nonimmune hydrops fetalis.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
01 2021
Historique:
received: 17 07 2020
accepted: 04 09 2020
revised: 03 09 2020
pubmed: 22 10 2020
medline: 3 6 2021
entrez: 21 10 2020
Statut: ppublish

Résumé

Hydrops fetalis (HF), accumulation of fluid in two or more fetal compartments, is life-threatening to the fetus. Genetic etiologies include many chromosomal and monogenic disorders. Despite this, the clinical workup typically evaluates limited genetic targets. To support broader molecular testing of pregnancies with HF, we cataloged the spectrum of monogenic disorders associated with nonimmune hydrops fetalis (NIHF). We performed a systematic literature review under PROSPERO tag CRD42018099495 of cases reporting NIHF meeting strict phenotypic criteria and well-defined genetic diagnosis. We ranked the evidence per gene based on number of reported cases, phenotype, and molecular/biochemical diagnosis. We identified 131 genes with strong evidence for an association with NIHF and 46 genes with emerging evidence spanning the spectrum of multisystem syndromes, cardiac disorders, hematologic disorders, and metabolic disorders. Several genes previously implicated with NIHF did not have any reported cases in the literature with both fetal hydrops and molecular diagnosis. Many genes with strong evidence for association with NIHF would not be detected using current sequencing panels. Nonimmune HF has many possible monogenic etiologies, several with treatment implications, but current diagnostic approaches are not exhaustive. Studies are needed to assess if broad sequencing approaches like exome sequencing are useful in clinical management of HF.

Identifiants

pubmed: 33082562
doi: 10.1038/s41436-020-00967-0
pii: S1098-3600(21)02520-X
pmc: PMC7796968
mid: NIHMS1645488
doi:

Types de publication

Research Support, N.I.H., Extramural Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3-12

Subventions

Organisme : NHGRI NIH HHS
ID : R21 HG011424
Pays : United States

Références

Bellini C, Donarini G, Paladini D, Calevo MG, Bellini T, Ramenghi LA, Hennekam RC. Etiology of non-immune hydrops fetalis: an update. Am J Med Genet A. 2015;167A:1082–1088.
doi: 10.1002/ajmg.a.36988
Norton ME, Chauhan SP, Dashe JS. (SMFM) SfM-FM: Society for maternal-fetal medicine (SMFM) clinical guideline #7: nonimmune hydrops fetalis. Am J Obstet Gynecol. 2015;212:127–139.
doi: 10.1016/j.ajog.2014.12.018
Al-Kouatly HB, Felder L, Makhamreh MM, Kass SL, Vora NL, Berghella V, Berger S, Wenger DA, Luzi P. Lysosomal storage disease spectrum in nonimmune hydrops fetalis: a retrospective case control study. Prenat Diagn. 2020;40:738–745.
doi: 10.1002/pd.5678
Makhamreh MM, Cottingham N, Ferreira CR, Berger S, Al-Kouatly HB. Nonimmune hydrops fetalis and congenital disorders of glycosylation: a systematic literature review. J Inherit Metab Dis. 2020;43:223–233.
doi: 10.1002/jimd.12162
Yates CL, Monaghan KG, Copenheaver D, Retterer K, Scuffins J, Kucera CR, Friedman B, Richard G, Juusola J. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet Med. 2017;19:1171–1178.
doi: 10.1038/gim.2017.31
Mardy AH, Chetty SP, Norton ME, Sparks TN. A system-based approach to the genetic etiologies of non-immune hydrops fetalis. Prenat Diagn. 2019;39:732–750.
doi: 10.1002/pd.5479
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
doi: 10.1371/journal.pmed.1000097
Hoogendam J, Farih-Sips H, Wÿnaendts LC, Löwik CW, Wit JM, Karperien M. Novel mutations in the parathyroid hormone (PTH)/PTH-related peptide receptor type 1 causing Blomstrand osteochondrodysplasia types I and II. J Clin Endocrinol Metab. 2007;92:1088–1095.
doi: 10.1210/jc.2006-0300
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.
doi: 10.1038/gim.2015.30
Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis. 2018;70:43–53.
doi: 10.1016/j.bcmd.2017.09.004
Balci TB, Hartley T, Xi Y, Dyment DA, Beaulieu CL, Bernier FP, Dupuis L, Horvath GA, Mendoza-Londono R, Prasad C, et al. Debunking Occam’s razor: diagnosing multiple genetic diseases in families by whole-exome sequencing. Clin Genet. 2017;92:281–289.
doi: 10.1111/cge.12987
Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K, Tazarourte-Pinturier MF, et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet. 2012;90:25–39.
doi: 10.1016/j.ajhg.2011.11.020
Prevention Genetics. Test: non-immune hydrops fetalis panel. https://www.preventiongenetics.com/testInfo?sel=test&val=Non-Immune+Hydrops+Fetalis+Panel . Access date: 15 July 2020.
Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47:D1038–D1043.
doi: 10.1093/nar/gky1151
Lee JJY, Wasserman WW, Hoffmann GF, van Karnebeek CDM, Blau N. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20:151–158.
doi: 10.1038/gim.2017.108
Son SB, Chun JM, Kim KA, Ko SY, Lee YK, Shin SM. A case report on 30-week premature twin babies with congenital myotonic dystrophy conceived by in vitro fertilization. J Korean Med Sci. 2012;27:1269–1272.
doi: 10.3346/jkms.2012.27.10.1269
Kuramitsu M, Sato-Otsubo A, Morio T, Takagi M, Toki T, Terui K, Wang R, Kanno H, Ohga S, Ohara A, et al. Extensive gene deletions in Japanese patients with Diamond-Blackfan anemia. Blood. 2012;119:2376–2384.
doi: 10.1182/blood-2011-07-368662
Gu X, Han L, Chen J, Wang J, Hao X, Zhang Y, Zhang J, Ge S, He Y. Antenatal screening and diagnosis of tuberous sclerosis complex by fetal echocardiography and targeted genomic sequencing. Medicine (Baltimore). 2018;97:e0112.
doi: 10.1097/MD.0000000000010112
Carrasco Salas P, Gómez-Molina G, Carreto-Alba P, Granell-Escobar R, Vázquez-Rico I, León-Justel A. Noonan syndrome: severe phenotype and PTPN11 mutations. Med Clin (Barc). 2019;152:62–64.
doi: 10.1016/j.medcli.2018.03.015
Tenorio J, Arias P, Martínez-Glez V, Santos F, García-Miñaur S, Nevado J, Lapunzina P. Simpson–Golabi–Behmel syndrome types I and II. Orphanet J Rare Dis. 2014;9:138.
doi: 10.1186/s13023-014-0138-0
Moreno CA, Kanazawa T, Barini R, Nomura ML, Andrade KC, Gomes CP, Heinrich JK, Giugliani R, Burin M, Cavalcanti DP. Non-immune hydrops fetalis: a prospective study of 53 cases. Am J Med Genet A. 2013;161A:3078–3086.
doi: 10.1002/ajmg.a.36171
Shamseldin HE, Kurdi W, Almusafri F, Alnemer M, Alkaff A, Babay Z, Alhashem A, Tulbah M, Alsahan N, Khan R, et al. Molecular autopsy in maternal-fetal medicine. Genet Med. 2018;20:420–427.
doi: 10.1038/gim.2017.111
Esser T, Chaoui R. Enlarged adrenal glands as a prenatal marker of congenital adrenal hyperplasia: a report of two cases. Ultrasound Obstet Gynecol. 2004;23:293–297.
doi: 10.1002/uog.994
Ramond F, Janin A, Di Filippo S, Chanavat V, Chalabreysse L, Roux-Buisson N, Sanlaville D, Touraine R, Millat G. Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction. Clin Genet. 2017;91:126–130.
doi: 10.1111/cge.12780
Chervinsky E, Khayat M, Soltsman S, Habiballa H, Elpeleg O, Shalev S. A homozygous TTN gene variant associated with lethal congenital contracture syndrome. Am J Med Genet A. 2018;176:1001–1005.
doi: 10.1002/ajmg.a.38639
Monteiro FP, Curry CJ, Hevner R, Elliott S, Fisher JH, Turocy J, Dobyns WB, Costa LA, Freitas E, Kitajima JP, et al. Biallelic loss of function variants in ATP1A2 cause hydrops fetalis, microcephaly, arthrogryposis and extensive cortical malformations. Eur J Med Genet. 2020;63:103624.
doi: 10.1016/j.ejmg.2019.01.014

Auteurs

Andrea M Quinn (AM)

Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.

Breanna N Valcarcel (BN)

Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.

Mona M Makhamreh (MM)

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.

Huda B Al-Kouatly (HB)

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.

Seth I Berger (SI)

Center for Genetic Medicine Research & Rare Disease Institute, Children's National Medical Center, Washington, DC, USA. sberger@cnmc.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH