Serotonin receptor 4 regulates hippocampal astrocyte morphology and function.


Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
04 2021
Historique:
received: 18 11 2019
revised: 15 10 2020
accepted: 19 10 2020
pubmed: 7 11 2020
medline: 8 2 2022
entrez: 6 11 2020
Statut: ppublish

Résumé

Astrocytes are an important component of the multipartite synapse and crucial for proper neuronal network function. Although small GTPases of the Rho family are powerful regulators of cellular morphology, the signaling modules of Rho-mediated pathways in astrocytes remain enigmatic. Here we demonstrated that the serotonin receptor 4 (5-HT

Identifiants

pubmed: 33156956
doi: 10.1002/glia.23933
doi:

Substances chimiques

Receptors, Serotonin 0
Serotonin 333DO1RDJY

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

872-889

Informations de copyright

© 2020 The Authors. GLIA published by Wiley Periodicals LLC.

Références

Amundson, R. H., Goderie, S. K., & Kimelberg, H. K. (1992). Uptake of [3H] serotonin and [3H] glutamate by primary astrocyte cultures. II. Differences in cultures prepared from different brain regions. Glia, 6(1), 9-18. https://doi.org/10.1002/glia.440060103
Andriezen, W. L. (1893). The neuroglia elements in the human brain. British Medical Journal, 2(1700), 227-230. https://doi.org/10.1136/bmj.2.1700.227
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22(5), 208-215. https://doi.org/10.1016/S0166-2236(98)01349-6
Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H. R., Robitaille, R., & Volterra, A. (2014). Gliotransmitters travel in time and space. Neuron, 81(4), 728-739. https://doi.org/10.1016/j.neuron.2014.02.007
Bandtlow, C. E. (2003). Regeneration in the central nervous system. Experimental Gerontology, 38(1), 79-86. https://doi.org/10.1016/S0531-5565(02)00165-1
Barthet, G., Framery, B., Gaven, F., Pellissier, L., Reiter, E., Claeysen, S., … Dumuis, A. (2007). 5-Hydroxytryptamine4 receptor activation of the extracellular signal-regulated kinase pathway depends on Src activation but not on G protein or β-Arrestin signaling. Molecular Biology of the Cell, 18(6), 1979-1991. https://doi.org/10.1091/mbc.E06-12-1080
Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348(2), 241-255.
Bockaert, J., Claeysen, S., Bécamel, C., Dumuis, A., & Marin, P. (2006). Neuronal 5-HT metabotropic receptors: Fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell and Tissue Research, 326(2), 553-572. https://doi.org/10.1007/s00441-006-0286-1
Boddum, K., Jensen, T. P., Magloire, V., Kristiansen, U., Rusakov, D. A., Pavlov, I., & Walker, M. C. (2016). Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nature Communications, 7, 13572. https://doi.org/10.1038/ncomms13572
Boisvert, M. M., Erikson, G. A., Shokhirev, M. N., & Allen, N. J. (2018). The aging astrocyte Transcriptome from multiple regions of the mouse brain. Cell Reports, 22(1), 269-285. https://doi.org/10.1016/j.celrep.2017.12.039
Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., … Barres, B. A. (2008). A Transcriptome database for astrocytes, neurons, and Oligodendrocytes: A new resource for understanding brain development and function. The Journal of Neuroscience, 28(1), 264-278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008
Camandola, S. (2018). Astrocytes, emerging stars of energy homeostasis. Cell Stress, 2(10), 246-252. https://doi.org/10.15698/cst2018.10.157
Chauhan, B. K., Lou, M., Zheng, Y., & Lang, R. A. (2011). Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18289-18294. https://doi.org/10.1073/pnas.1108993108
Chung, W.-S., Allen, N. J., & Eroglu, C. (2015). Astrocytes control synapse formation, function, and elimination. Cold Spring Harbor Perspectives in Biology, 7(9), a020370. https://doi.org/10.1101/cshperspect.a020370
Compan, V., Zhou, M., Grailhe, R., Gazzara, R. A., Martin, R., Gingrich, J., … Hen, R. (2004). Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor Knock-out mice. Journal of Neuroscience, 24(2), 412-419. https://doi.org/10.1523/JNEUROSCI.2806-03.2004
Dallérac, G., Zapata, J., & Rouach, N. (2018). Versatile control of synaptic circuits by astrocytes: Where, when and how? Nature Reviews Neuroscience, 19(12), 729-743. https://doi.org/10.1038/s41583-018-0080-6
Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(1), 163-176. https://doi.org/10.1113/jphysiol.1996.sp021204
Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995-1008. https://doi.org/10.1016/s0896-6273(00)80338-4
Dong, J.-M., Leung, T., Manser, E., & Lim, L. (1998). cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the rho kinase ROKα. Journal of Biological Chemistry, 273(35), 22554-22562. https://doi.org/10.1074/jbc.273.35.22554
Ellerbroek, S. M., Wennerberg, K., & Burridge, K. (2003). Serine phosphorylation negatively regulates RhoA in vivo. Journal of Biological Chemistry, 278(21), 19023-19031. https://doi.org/10.1074/jbc.M213066200
Farmer, W. T., & Murai, K. (2017). Resolving astrocyte heterogeneity in the CNS. Frontiers in Cellular Neuroscience, 11, 300. https://doi.org/10.3389/fncel.2017.00300
Flores-Méndez, M., Mendez-Flores, O. G., & Ortega, A. (2016). Glia plasma membrane transporters: Key players in glutamatergic neurotransmission. Neurochemistry International, 98, 46-55. https://doi.org/10.1016/j.neuint.2016.04.004
Forget, M.-A., Desrosiers, R. R., Gingras, D., & Béliveau, R. (2002). Phosphorylation states of Cdc42 and RhoA regulate their interactions with rho GDP dissociation inhibitor and their extraction from biological membranes. Biochemical Journal, 361(2), 243-254. https://doi.org/10.1042/bj3610243
Haber, M., Zhou, L., & Murai, K. K. (2006). Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(35), 8881-8891. https://doi.org/10.1523/JNEUROSCI.1302-06.2006
Halassa, M. M., Fellin, T., Takano, H., Dong, J.-H., & Haydon, P. G. (2007). Synaptic islands defined by the territory of a single astrocyte. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(24), 6473-6477. https://doi.org/10.1523/JNEUROSCI.1419-07.2007
Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33(5), 891-895. https://doi.org/10.1042/BST20050891
Hall, A. (1998). Rho GTPases and the Actin cytoskeleton. Science, 279(5350), 509-514. https://doi.org/10.1126/science.279.5350.509
Hertz, L., Chen, Y., & Song, D. (2017). Astrocyte cultures mimicking brain astrocytes in gene expression, signaling, metabolism and K+ uptake and showing Astrocytic gene expression overlooked by immunohistochemistry and in situ hybridization. Neurochemical Research, 42(1), 254-271. https://doi.org/10.1007/s11064-016-1828-x
Jaffe, A. B., & Hall, A. (2005). RHO GTPASES: Biochemistry and Biology [Review-article]. Http://Dx.Doi.Org/10.1146/Annurev.Cellbio.21.020604.150721. http://www.annualreviews.org/doi/abs/10.1146/annurev.cellbio.21.020604.150721
Kim, J.-G., Islam, R., Cho, J. Y., Jeong, H., Cap, K.-C., Park, Y., … Park, J.-B. (2018). Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. Journal of Cellular Physiology, 233(9), 6381-6392. https://doi.org/10.1002/jcp.26487
Kobe, F., Guseva, D., Jensen, T. P., Wirth, A., Renner, U., Hess, D., … Ponimaskin, E. (2012). 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. The Journal of Neuroscience, 32(9), 2915-2930. https://doi.org/10.1523/JNEUROSCI.2765-11.2012
Kvachnina, E. (2005). 5-HT7 receptor is coupled to G subunits of Heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. Journal of Neuroscience, 25(34), 7821-7830. https://doi.org/10.1523/JNEUROSCI.1790-05.2005
Lee, H. S., Ghetti, A., Pinto-Duarte, A., Wang, X., Dziewczapolski, G., Galimi, F., … Heinemann, S. F. (2014). Astrocytes contribute to gamma oscillations and recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 111(32), E3343-E3352. https://doi.org/10.1073/pnas.1410893111
Lin, C.-C. J., Yu, K., Hatcher, A., Huang, T.-W., Lee, H. K., Carlson, J., … Deneen, B. (2017). Identification of diverse astrocyte populations and their malignant analogs. Nature Neuroscience, 20(3), 396-405. https://doi.org/10.1038/nn.4493
Lundgaard, I., Osório, M. J., Kress, B., Sanggaard, S., & Nedergaard, M. (2014). White matter astrocytes in health and disease. Neuroscience, 0, 161-173. https://doi.org/10.1016/j.neuroscience.2013.10.050
Mackay, D. J. G., & Hall, A. (1998). Rho GTPases. Journal of Biological Chemistry, 273(33), 20685-20688. https://doi.org/10.1074/jbc.273.33.20685
Matsumoto, M., Togashi, H., Mori, K., Ueno, K., Ohashi, S., Kojima, T., & Yoshioka, M. (2001). Evidence for involvement of central 5-HT4 receptors in cholinergic function associated with cognitive processes: Behavioral, electrophysiological. And Neurochemical Studies. Journal of Pharmacology and Experimental Therapeutics, 296(3), 676-682.
Matyash, V., & Kettenmann, H. (2010). Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 63(1-2), 2-10. https://doi.org/10.1016/j.brainresrev.2009.12.001
Mederos, S., González-Arias, C., & Perea, G. (2018). Astrocyte-neuron networks: A multilane highway of signaling for homeostatic brain function. Frontiers in Synaptic Neuroscience, 10, 45. https://doi.org/10.3389/fnsyn.2018.00045
Minge, D., Senkov, O., Kaushik, R., Herde, M. K., Tikhobrazova, O., Wulff, A. B., … Henneberger, C. (2017). Heparan sulfates support pyramidal cell excitability, synaptic plasticity, and context discrimination. Cerebral Cortex (New York, N.Y.: 1991), 27(2), 903-918. https://doi.org/10.1093/cercor/bhx003
Mishra, A. (2017). Binaural blood flow control by astrocytes: Listening to synapses and the vasculature. The Journal of Physiology, 595(6), 1885-1902. https://doi.org/10.1113/JP270979
Miyazaki, I., & Asanuma, M. (2016). Serotonin 1A receptors on astrocytes as a potential target for the treatment of Parkinson's disease. Current Medicinal Chemistry, 23(7), 686-700. https://doi.org/10.2174/0929867323666160122115057
Mlinar, B., Mascalchi, S., Mannaioni, G., Morini, R., & Corradetti, R. (2006). 5-HT4 receptor activation induces long-lasting EPSP-spike potentiation in CA1 pyramidal neurons. European Journal of Neuroscience, 24(3), 719-731. https://doi.org/10.1111/j.1460-9568.2006.04949.x
Muller, C. P., & Jacobs, B. (2009). Handbook of the behavioral neurobiology of serotonin. Cambridge, MA, USA: Academic Press. https://www.elsevier.com/books/handbook-of-the-behavioral-neurobiology-of-serotonin/muller/978-0-12-374634-4.
Nusser, N., Gosmanova, E., Makarova, N., Fujiwara, Y., Yang, L., Guo, F., … Tigyi, G. (2006). Serine phosphorylation differentially affects RhoA binding to effectors: Implications to NGF-induced neurite outgrowth. Cellular Signalling, 18(5), 704-714. https://doi.org/10.1016/j.cellsig.2005.06.010
Oberheim, N. A., Goldman, S. A., & Nedergaard, M. (2012). Heterogeneity of Astrocytic form and function. Methods in Molecular Biology (Clifton, N.J.), 814, 23-45. https://doi.org/10.1007/978-1-61779-452-0_3
Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A., & Svoboda, K. (2002). Facilitation at single synapses probed with optical quantal analysis. Nature Neuroscience, 5(7), 657-664. https://doi.org/10.1038/nn867
Okamoto, K.-I., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of Actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 7(10), 1104-1112. https://doi.org/10.1038/nn1311
Parga, J., Rodriguez-Pallares, J., Muñoz, A., Guerra, M. J., & Labandeira-Garcia, J. L. (2007). Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptors. Developmental Neurobiology, 67(1), 10-22. https://doi.org/10.1002/dneu.20306
Peng, L., Verkhratsky, A., Gu, L., & Li, B. (2015). Targeting astrocytes in major depression. Expert Review of Neurotherapeutics, 15(11), 1299-1306. https://doi.org/10.1586/14737175.2015.1095094
Ponimaskin, E. G., Profirovic, J., Vaiskunaite, R., Richter, D. W., & Voyno-Yasenetskaya, T. A. (2002). 5-Hydroxytryptamine 4(a) receptor is coupled to the G subunit of heterotrimeric G13 protein. Journal of Biological Chemistry, 277(23), 20812-20819. https://doi.org/10.1074/jbc.M112216200
Rose, C. R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., & Henneberger, C. (2018). Astroglial glutamate signaling and uptake in the hippocampus. Frontiers in Molecular Neuroscience, 10, 451. https://doi.org/10.3389/fnmol.2017.00451
Rusakov, D. A., Bard, L., Stewart, M. G., & Henneberger, C. (2014). Diversity of astroglial functions alludes to subcellular specialisation. Trends in Neurosciences, 37(4), 228-242. https://doi.org/10.1016/j.tins.2014.02.008
Schill, Y., Bijata, M., Kopach, O., Cherkas, V., Abdel-Galil, D., Böhm, K., … Ponimaskin, E. (2020). Serotonin 5-HT 4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-Actin. Communications Biology, 3(1), 1-16. https://doi.org/10.1038/s42003-020-0791-x
Sheikhbahaei, S., Turovsky, E. A., Hosford, P. S., Hadjihambi, A., Theparambil, S. M., Liu, B., … Gourine, A. V. (2018). Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nature Communications, 9, 370. https://doi.org/10.1038/s41467-017-02723-6
Sibille, J., Pannasch, U., & Rouach, N. (2014). Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. The Journal of Physiology, 592(1), 87-102. https://doi.org/10.1113/jphysiol.2013.261735
Stobart, J. L., & Anderson, C. M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Frontiers in Cellular Neuroscience, 7, 38. https://doi.org/10.3389/fncel.2013.00038
Sugiyama, K., Tago, K., Matsushita, S., Nishikawa, M., Sato, K., Muto, Y., … Ueda, H. (2017). Heterotrimeric G protein Gαs subunit attenuates PLEKHG2, a rho family-specific guanine nucleotide exchange factor, by direct interaction. Cellular Signalling, 32, 115-123. https://doi.org/10.1016/j.cellsig.2017.01.022
Takemoto, K., Ishihara, S., Mizutani, T., Kawabata, K., & Haga, H. (2015). Compressive stress induces Dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl Cyclase/protein kinase a signaling pathway. PLoS One, 10(3), e0117937. https://doi.org/10.1371/journal.pone.0117937
Teixeira, C. M., Rosen, Z. B., Suri, D., Sun, Q., Hersh, M., Sargin, D., … Ansorge, M. S. (2018). Hippocampal 5-HT input regulates memory formation and Schaffer collateral excitation. Neuron, 98(5), 992-1004.e4. https://doi.org/10.1016/j.neuron.2018.04.030
Tkachenko, E., Sabouri-Ghomi, M., Pertz, O., Kim, C., Gutierrez, E., Machacek, M., … Ginsberg, M. H. (2011). Protein kinase a governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nature Cell Biology, 13, 660-667.
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., & Barres, B. A. (2001). Control of synapse number by glia. Science (New York, N.Y.), 291(5504), 657-661. https://doi.org/10.1126/science.291.5504.657
Wallraff, A., Odermatt, B., Willecke, K., & Steinhäuser, C. (2004). Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia, 48(1), 36-43. https://doi.org/10.1002/glia.20040
Wu, Y. E., Pan, L., Zuo, Y., Li, X., & Hong, W. (2017). Detecting activated cell populations using single-cell RNA-Seq. Neuron, 96(2), 313-329.e6. https://doi.org/10.1016/j.neuron.2017.09.026
Wu, Y.-W., Tang, X., Arizono, M., Bannai, H., Shih, P.-Y., Dembitskaya, Y., … Semyanov, A. (2014). Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium, 55(2), 119-129. https://doi.org/10.1016/j.ceca.2013.12.006
Yoshizaki, H., Ohba, Y., Kurokawa, K., Itoh, R. E., Nakamura, T., Mochizuki, N., … Matsuda, M. (2003). Activity of rho-family GTPases during cell division as visualized with FRET-based probes. The Journal of Cell Biology, 162(2), 223-232. https://doi.org/10.1083/jcb.200212049
Zeug, A., Müller, F. E., Anders, S., Herde, M. K., Minge, D., Ponimaskin, E., & Henneberger, C. (2018). Control of astrocyte morphology by rho GTPases. Brain Research Bulletin, 136, 44-53. https://doi.org/10.1016/j.brainresbull.2017.05.003
Zhang, Y., & Barres, B. A. (2010). Astrocyte heterogeneity: An underappreciated topic in neurobiology. Current Opinion in Neurobiology, 20(5), 588-594. https://doi.org/10.1016/j.conb.2010.06.005
Zhou, B., Zuo, Y., & Jiang, R. (2019). Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics, 25(6), 665-673. https://doi.org/10.1111/cns.13123

Auteurs

Franziska E Müller (FE)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.

Sophie K Schade (SK)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.

Volodymyr Cherkas (V)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.

Laura Stopper (L)

Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.

Björn Breithausen (B)

Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany.

Daniel Minge (D)

Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany.

Hristo Varbanov (H)

Institute of Neurophysiology, Hannover Medical School, Hannover, Germany.

Christian Wahl-Schott (C)

Institute of Neurophysiology, Hannover Medical School, Hannover, Germany.

Svitlana Antoniuk (S)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
Nencki Institute of Experimental Biology of the Polish Academy of Science, Warsaw, Poland.

Catia Domingos (C)

Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany.

Valérie Compan (V)

Department of Sciences, Brain, Anorexia & Addiction, Nîmes University, Nîmes, France.

Frank Kirchhoff (F)

Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.

Christian Henneberger (C)

Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany.
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Institute of Neurology, University College London, London, UK.

Evgeni Ponimaskin (E)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.

Andre Zeug (A)

Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.

Articles similaires

Cerebrospinal Fluid Animals Liver Glymphatic System Spinal Cord
Animals Astrocytes Amyloid beta-Protein Precursor Mice Mice, Transgenic
Animals Neurogenesis Hippocampus Mice Male
Animals Astrocytes Signal Transduction Brain Injuries, Traumatic Transcription Factor AP-1

Classifications MeSH