T cell cytokines in the diagnostic of early-onset sepsis.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
30
05
2020
accepted:
03
10
2020
revised:
28
09
2020
pubmed:
12
11
2020
medline:
9
2
2022
entrez:
11
11
2020
Statut:
ppublish
Résumé
Early-onset sepsis (EOS) remains a substantial cause of morbidity and mortality among neonates. Yet, currently available biological parameters have not proven to be accurate enough to predict EOS reliably. This study aimed to determine serum concentrations of 13 cytokines in umbilical cord blood and evaluate their diagnostic value for EOS. A prospective single-center study that included analysis of umbilical cord blood of term and preterm neonates who were born from March 2017 to November 2017. Using ELISA analysis, 13 cytokines were simultaneously quantified and correlated with the development of EOS. Four hundred and seventy-four neonates were included, of which seven met the criteria for culture-positive EOS. Interleukin (IL)-6 (p < 0.001), IL-9 (p = 0.003), and IL-21 (p < 0.001) were significantly increased in neonates with EOS compared to controls. Sensitivity and specificity for IL-6, IL-9, and IL-21 at the defined cut-off points were 85.7 and 77.3%, 71.4 and 62.5%, and 71.4 and 52.0%, respectively. In neonates with EOS, IL-9 and IL-21 are significantly elevated and may be employed in the diagnostic of EOS. However, diagnostic accuracy remains lower than with IL-6. Values of 13 T cell cytokines may be used as reference values for future studies in neonates. Interleukin-9 (IL-9) and interleukin-21 (IL-21) are significantly elevated in neonates with early-onset sepsis. IL-9 and IL-21 have been shown to play a specific role in neonatal sepsis. Neonatal reference values were generated for several cytokines. IL-9 and IL-21 might be attractive biomarkers for neonatal sepsis in future. This study is likely to promote further research in this area. Values of several T cell cytokines may be used as reference values for future studies in neonates.
Sections du résumé
BACKGROUND
Early-onset sepsis (EOS) remains a substantial cause of morbidity and mortality among neonates. Yet, currently available biological parameters have not proven to be accurate enough to predict EOS reliably. This study aimed to determine serum concentrations of 13 cytokines in umbilical cord blood and evaluate their diagnostic value for EOS.
METHODS
A prospective single-center study that included analysis of umbilical cord blood of term and preterm neonates who were born from March 2017 to November 2017. Using ELISA analysis, 13 cytokines were simultaneously quantified and correlated with the development of EOS.
RESULTS
Four hundred and seventy-four neonates were included, of which seven met the criteria for culture-positive EOS. Interleukin (IL)-6 (p < 0.001), IL-9 (p = 0.003), and IL-21 (p < 0.001) were significantly increased in neonates with EOS compared to controls. Sensitivity and specificity for IL-6, IL-9, and IL-21 at the defined cut-off points were 85.7 and 77.3%, 71.4 and 62.5%, and 71.4 and 52.0%, respectively.
CONCLUSIONS
In neonates with EOS, IL-9 and IL-21 are significantly elevated and may be employed in the diagnostic of EOS. However, diagnostic accuracy remains lower than with IL-6. Values of 13 T cell cytokines may be used as reference values for future studies in neonates.
IMPACT
Interleukin-9 (IL-9) and interleukin-21 (IL-21) are significantly elevated in neonates with early-onset sepsis. IL-9 and IL-21 have been shown to play a specific role in neonatal sepsis. Neonatal reference values were generated for several cytokines. IL-9 and IL-21 might be attractive biomarkers for neonatal sepsis in future. This study is likely to promote further research in this area. Values of several T cell cytokines may be used as reference values for future studies in neonates.
Identifiants
pubmed: 33173181
doi: 10.1038/s41390-020-01248-x
pii: 10.1038/s41390-020-01248-x
doi:
Substances chimiques
Biomarkers
0
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
191-196Informations de copyright
© 2020. International Pediatric Research Foundation, Inc.
Références
Vergnano, S., Sharland, M., Kazembe, P., Mwansambo, C. & Heath, P. T. Neonatal sepsis: an international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 90, F220–F224 (2005).
pubmed: 15846011
pmcid: 1721871
doi: 10.1136/adc.2002.022863
Wynn, J. L. Defining neonatal sepsis. Curr. Opin. Pediatr. 28, 135–140 (2016).
pubmed: 26766602
pmcid: 4786443
doi: 10.1097/MOP.0000000000000315
Mishra, U. K., Jacobs, S. E., Doyle, L. W. & Garland, S. M. Newer approaches to the diagnosis of early onset neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 91, F208–F212 (2006).
pubmed: 16632649
pmcid: 2672708
doi: 10.1136/adc.2004.064188
Kuzniewicz, M. W. et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr. 171, 365–371 (2017).
pubmed: 28241253
doi: 10.1001/jamapediatrics.2016.4678
pmcid: 28241253
de Jong, H. K., van der Poll, T. & Wiersinga, W. J. The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422–430 (2010).
pubmed: 20530955
doi: 10.1159/000316286
pmcid: 20530955
Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).
pubmed: 9971870
doi: 10.1056/NEJM199902113400607
pmcid: 9971870
Machado, J. R. et al. Neonatal sepsis and inflammatory mediators. Mediators Inflamm. 2014, 269681 (2014).
pubmed: 25614712
doi: 10.1155/2014/910621
pmcid: 25614712
Chauhan, N., Tiwari, S. & Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Micro. Pathog. 107, 234–242 (2017).
doi: 10.1016/j.micpath.2017.03.042
Cobo, T. et al. Umbilical cord blood IL-6 as predictor of early-onset neonatal sepsis in women with preterm prelabour rupture of membranes. PLoS ONE 8, e69341 (2013).
pubmed: 23894452
pmcid: 3722235
doi: 10.1371/journal.pone.0069341
Rego, M. A., Martinez, F. E., Elias, J. & Mussi-Pinhata, M. M. Diagnostic value of interleukin-6 and C-reactive protein on early onset bacterial infection in preterm neonates with respiratory distress. J. Perinat. Med. 38, 527–533. (2010).
pubmed: 20443669
doi: 10.1515/jpm.2010.071
pmcid: 20443669
Cernada, M. et al. Cord blood interleukin-6 as a predictor of early-onset neonatal sepsis. Acta Paediatr. 101, e203–e207 (2012).
pubmed: 22211677
doi: 10.1111/j.1651-2227.2011.02577.x
pmcid: 22211677
Krueger, M. et al. Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of early-onset infection in premature infants. Biol. Neonate 80, 118–123 (2001).
pubmed: 11509811
doi: 10.1159/000047130
pmcid: 11509811
Franz, A. R., Sieber, S., Pohlandt, F., Kron, M. & Steinbach, G. Whole blood interleukin 8 and plasma interleukin 8 levels in newborn infants with suspected bacterial infection. Acta Paediatr. 93, 648–653 (2004).
pubmed: 15174789
doi: 10.1111/j.1651-2227.2004.tb02991.x
pmcid: 15174789
Berner, R. et al. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr. Res. 44, 469–477 (1998).
pubmed: 9773833
doi: 10.1203/00006450-199810000-00002
pmcid: 9773833
Labenne, M. et al. A clinic-biological score for diagnosing early-onset neonatal infection in critically ill preterm infants. Pediatr. Crit. Care Med. 12, 203–209 (2011).
pubmed: 20495505
doi: 10.1097/PCC.0b013e3181e2a53b
pmcid: 20495505
Abdollahi, A., Shoar, S., Nayyeri, F. & Shariat, M. Diagnostic value of simultaneous measurement of procalcitonin, interleukin-6 and hs-CRP in prediction of early-onset neonatal sepsis. Mediterr. J. Hematol. Infect. Dis. 4, e2012028 (2012).
pubmed: 22708043
pmcid: 3375671
doi: 10.4084/mjhid.2012.028
Steinberger, E., Hofer, N. & Resch, B. Cord blood procalcitonin and Interleukin-6 are highly sensitive and specific in the prediction of early-onset sepsis in preterm infants. Scand. J. Clin. Lab. Investig. 74, 432–436 (2014).
doi: 10.3109/00365513.2014.900696
Ebenebe, C. U. et al. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2019.1606194 (2019).
Liu, J. et al. Association of IL-21 polymorphisms (rs907715, rs2221903) with susceptibility to multiple autoimmune diseases: a meta-analysis. Autoimmunity 48, 108–116 (2015).
pubmed: 25074442
doi: 10.3109/08916934.2014.944262
pmcid: 25074442
Chakraborty, S., Kubatzky, K. F. & Mitra, D. K. An update on interleukin-9: from its cellular source and signal transduction to its role in immunopathogenesis. Int. J. Mol. Sci. 20, 2113 (2019).
Dugas, B. et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur. J. Immunol. 23, 1687–1692 (1993).
pubmed: 7686859
doi: 10.1002/eji.1830230743
pmcid: 7686859
Petit-Frere, C., Dugas, B., Braquet, P. & Mencia-Huerta, J. M. Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79, 146–151 (1993).
pubmed: 8509135
pmcid: 1422055
Kuchen, S. et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J. Immunol. 179, 5886–5896 (2007).
pubmed: 17947662
doi: 10.4049/jimmunol.179.9.5886
pmcid: 17947662
Kaplan, M. H., Hufford, M. M. & Olson, M. R. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15, 295–307 (2015).
pubmed: 25848755
pmcid: 4445728
doi: 10.1038/nri3824
Ma, C. S., Tangye, S. G. & Deenick, E. K. Human Th9 cells: inflammatory cytokines modulate IL-9 production through the induction of IL-21. Immunol. Cell Biol. 88, 621–623 (2010).
pubmed: 20531361
doi: 10.1038/icb.2010.73
pmcid: 20531361
Sugitharini, V., Prema, A. & Berla Thangam, E. Inflammatory mediators of systemic inflammation in neonatal sepsis. Inflamm. Res. 62, 1025–1034 (2013).
pubmed: 24013483
doi: 10.1007/s00011-013-0661-9
pmcid: 24013483
Ng, P. C. Diagnostic markers of infection in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 89, F229–F235 (2004).
pubmed: 15102726
pmcid: 1721679
doi: 10.1136/adc.2002.023838
Santana, C. et al. Cord blood levels of cytokines as predictors of early neonatal sepsis. Acta Paediatr. 90, 1176–1181 (2001).
pubmed: 11697431
doi: 10.1111/j.1651-2227.2001.tb03250.x
pmcid: 11697431
Schultz, C., Strunk, T., Temming, P., Matzke, N. & Hartel, C. Reduced IL-10 production and -receptor expression in neonatal T lymphocytes. Acta Paediatr. 96, 1122–1125 (2007).
pubmed: 17578489
doi: 10.1111/j.1651-2227.2007.00375.x
pmcid: 17578489
Khaertynov, K. S. et al. Comparative assessment of cytokine pattern in early and late onset of neonatal sepsis. J. Immunol. Res. 2017, 8601063 (2017).
pubmed: 28367457
pmcid: 5357566
doi: 10.1155/2017/8601063
Martin, D. A. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17–26 (2013).
pubmed: 22673731
doi: 10.1038/jid.2012.194
pmcid: 22673731
Ahmed Ali, M. et al. Interleukin-17 as a predictor of sepsis in polytrauma patients: a prospective cohort study. Eur. J. Trauma Emerg. Surg. 44, 621–626 (2018).
pubmed: 28916848
doi: 10.1007/s00068-017-0841-3
pmcid: 28916848
Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).
pubmed: 25706098
pmcid: 4407497
doi: 10.1146/annurev-immunol-032414-112123
Weber, G. F. et al. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect. Immun. 75, 1690–1697 (2007).
pubmed: 17261606
pmcid: 1865721
doi: 10.1128/IAI.01564-06
Ziesche, E. et al. Dexamethasone suppresses interleukin-22 associated with bacterial infection in vitro and in vivo. Clin. Exp. Immunol. 157, 370–376 (2009).
pubmed: 19664145
pmcid: 2745031
doi: 10.1111/j.1365-2249.2009.03969.x
Bingold, T. M. et al. Interleukin-22 detected in patients with abdominal sepsis. Shock 34, 337–340 (2010).
pubmed: 20220564
doi: 10.1097/SHK.0b013e3181dc07b1
pmcid: 20220564
Douvas, G. S., Looker, D. L., Vatter, A. E. & Crowle, A. J. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 50, 1–8 (1985).
pubmed: 3930401
pmcid: 262123
doi: 10.1128/iai.50.1.1-8.1985
Nathan, C. F., Murray, H. W., Wiebe, M. E. & Rubin, B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983).
pubmed: 6411853
doi: 10.1084/jem.158.3.670
pmcid: 6411853
Billiau, A. & Matthys, P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 20, 97–113 (2009).
pubmed: 19268625
doi: 10.1016/j.cytogfr.2009.02.004
pmcid: 19268625
Bender, L. et al. Early and late markers for the detection of early-onset neonatal sepsis. Dan. Med. Bull. 55, 219–223 (2008).
pubmed: 19232162
pmcid: 19232162
Ng, P. C. et al. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. Arch. Dis. Child. Fetal Neonatal Ed. 88, F209–F213 (2003).
pubmed: 12719394
pmcid: 1721542
doi: 10.1136/fn.88.3.F209
Schelonka, R. L. et al. Volume of blood required to detect common neonatal pathogens. J. Pediatr. 129, 275–278 (1996).
pubmed: 8765627
doi: 10.1016/S0022-3476(96)70254-8
pmcid: 8765627
Chang, B. A. Early inflammation in the absence of overt infection in preterm neonates exposed to intensive care. Cytokine 56, 621–626 (2011).
pubmed: 21940177
pmcid: 4494824
doi: 10.1016/j.cyto.2011.08.028
Wong, C. F. Assay of pleural fluid interleukin-6, tumour necrosis factor-alpha and interferon-gamma in the diagnosis and outcome correlation of tuberculous effusion. Respir. Med. 97, 1289–1295 (2003).
pubmed: 14682409
doi: 10.1016/j.rmed.2003.07.003
pmcid: 14682409
Ramirez, P. et al. Systemic inflammatory response and increased risk for ventilator-associated pneumonia: a preliminary study. Crit. Care Med. 37, 1691–1695 (2009).
pubmed: 19325465
doi: 10.1097/CCM.0b013e31819fec5f
pmcid: 19325465
Szkodzinski, J. et al. Serum concentrations of interleukin-4 and interferon-gamma in relation to severe left ventricular dysfunction in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart Vessels 26, 399–407 (2011).
pubmed: 21127885
doi: 10.1007/s00380-010-0076-2
pmcid: 21127885
Ashizawa, T. et al. Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: role of IL-6 as a prognostic factor. Gastric Cancer 8, 124–131 (2005).
pubmed: 15864720
doi: 10.1007/s10120-005-0315-x
pmcid: 15864720
Abdel Galil, S. M., Ezzeldin, N. & El-Boshy, M. E. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine 76, 280–287 (2015).
pubmed: 26073684
doi: 10.1016/j.cyto.2015.05.007
pmcid: 26073684
Tortorella, C. et al. Interleukin-6, interleukin-1beta, and tumor necrosis factor alpha in menstrual effluents as biomarkers of chronic endometritis. Fertil. Steril. 101, 242–247 (2014).
pubmed: 24314919
doi: 10.1016/j.fertnstert.2013.09.041
pmcid: 24314919
Rajendiran, S. et al. Diagnostic significance of IL-6 and IL-8 in tubal ectopic pregnancy. J. Obstet. Gynaecol. 36, 909–911 (2016).
pubmed: 27612507
doi: 10.1080/01443615.2016.1174821
pmcid: 27612507