Parental exome analysis identifies shared carrier status for a second recessive disorder in couples with an affected child.


Journal

European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235

Informations de publication

Date de publication:
03 2021
Historique:
received: 11 08 2020
accepted: 20 10 2020
revised: 11 10 2020
pubmed: 24 11 2020
medline: 15 1 2022
entrez: 23 11 2020
Statut: ppublish

Résumé

Consanguinity, commonplace in many regions around the globe, is associated with an increased risk of autosomal recessive (AR) genetic disorders. Consequently, consanguineous couples undergoing preimplantation genetic diagnosis (PGD) for one Mendelian disorder may be at increased risk for a child with a second, unrelated AR genetic disorder. We examined the yield of exome analysis for carrier screening of additional AR disorders, beyond the primary diagnosis, amongst consanguineous vs. non-consanguineous populations. Parental samples from trio exomes of 102 consanguineous families and 105 non-consanguineous controls were evaluated for shared carrier status, after disregarding the primary molecular diagnosis. Results were sub-classified according to disease severity. Secondary shared carrier status for pathogenic and likely pathogenic variants leading to AR disorders of moderate to profound severity was identified in 10/102 (9.8%) consanguineous couples, as compared to 1/105 (0.95%) non-consanguineous couples (χ

Identifiants

pubmed: 33223529
doi: 10.1038/s41431-020-00756-y
pii: 10.1038/s41431-020-00756-y
pmc: PMC7940654
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

455-462

Références

Hamamy H, Antonarakis SE, Cavalli-Sforza LL, Temtamy S, Romeo G, Kate LP, et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet Med. 2011;13:841–7.
doi: 10.1097/GIM.0b013e318217477f
Becker R, Keller T, Wegner RD, Neitzel H, Stumm M, Knoll U, et al. Consanguinity and pregnancy outcomes in a multi-ethnic, metropolitan European population. Prenat Diagn. 2015;35:81–9.
doi: 10.1002/pd.4487
Shieh JT, Bittles AH, Hudgins L. Consanguinity and the risk of congenital heart disease. Am J Med Genet A. 2012;158A:1236–41.
doi: 10.1002/ajmg.a.35272
Bennett RL, Motulsky AG, Bittles A, Hudgins L, Uhrich S, Doyle DL, et al. Genetic counseling and screening of consanguineous couples and their offspring: recommendations of the National Society of Genetic Counselors. J Genet Couns. 2002;11:97–119.
doi: 10.1023/A:1014593404915
Eaton A, Hartley T, Kernohan KD, Ito Y, Lamont RE, Parboosingh JS, et al. When to think outside the autozygome: Best practices for exome sequencing in “consanguineous” families. Clin Genet. 2020;97:835–43.
doi: 10.1111/cge.13736
Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.
doi: 10.1038/gim.2013.73
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
doi: 10.1038/gim.2015.30
Capalbo A, Valero RA, Jimenez-Almazan J, Pardo PM, Fabiani M, Jiménez D, et al. Optimizing clinical exome design and parallel gene-testing for recessive genetic conditions in preconception carrier screening: translational research genomic data from 14,125 exomes. PLoS Genet. 2019;15:e1008409.
doi: 10.1371/journal.pgen.1008409
Gambin T, Jhangiani SN, Below JE, Campbell IM, Wiszniewski W, Muzny DM, et al. Secondary findings and carrier test frequencies in a large multiethnic sample. Genome Med. 2015;7:54.
doi: 10.1186/s13073-015-0171-1
Sallevelt SCEH, de Koning B, Szklarczyk R, Paulussen ADC, de Die-Smulders CEM, Smeets HJM. A comprehensive strategy for exome-based preconception carrier screening. Genet Med. 2017;19:583–92.
doi: 10.1038/gim.2016.153
Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coabn Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl J Med. 2017;376:21–31.
doi: 10.1056/NEJMoa1516767
Karaca E, Posey JE, Coban Akdemir Z, Pehlivan D, Harel T, Jhangiani SN, et al. Phenotypic expansion illuminates multilocus pathogenic variation. Genet Med. 2018;20:1528–37.
doi: 10.1038/gim.2018.33
Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;105:879.
doi: 10.1016/j.ajhg.2019.09.019
Lazarin GA, Hawthorne F, Collins NS, Platt EA, Evans EA, Haque IS. Systematic classification of disease severity for evaluation of expanded carrier screening panels. PLoS One. 2014;9:e114391.
doi: 10.1371/journal.pone.0114391
Sharkia R, Mahajnah M, Athamny E, Khatib M, Sheikh-Muhammad A, Zalan A. Changes in marriage patterns among the Arab community in Israel over a 60-year period. J Biosoc Sci. 2016;48:283–7.
doi: 10.1017/S0021932015000103
Delatycki MB, Alkuraya F, Archibald A, Castellani C, Cornel M, Grody WW, et al. International perspectives on the implementation of reproductive carrier screening. Prenat Diagn. 2020;40:301–10.
doi: 10.1002/pd.5611
Zlotogora J, Grotto I, Kaliner E, Gamzu R. The Israeli national population program of genetic carrier screening for reproductive purposes. Genet Med. 2016;18:203–6.
doi: 10.1038/gim.2015.55
Antonarakis SE. Carrier screening for recessive disorders. Nat Rev Genet. 2019;20:549–61.
doi: 10.1038/s41576-019-0134-2
Guo MH, Gregg AR. Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels. Genet Med. 2019;21:1940–7.
doi: 10.1038/s41436-019-0472-7
Josephi-Taylor S, Barlow-Stewart K, Selvanathan A, Roscioli T, Bittles A, Meiser B, et al. User acceptability of whole exome reproductive carrier testing for consanguineous couples in Australia. J Genet Couns. 2019;28:240–50.
doi: 10.1007/s10897-018-0298-5
Kirk EP, Barlow-Stewart K, Selvanathan A, Josephi-Taylor S, Worgan L, Rajagopalan S, et al. Beyond the panel: preconception screening in consanguineous couples using the TruSight One “clinical exome”. Genet Med. 2019;21:608–12.
doi: 10.1038/s41436-018-0082-9
Berkun L, Slae M, Mor-Shaked H, Koplewitz B, Eventov-Friedman S, Harel T. Homozygous variants in MAPRE2 and CDON in individual with skin folds, growth delay, retinal coloboma, and pyloric stenosis. Am J Med Genet A. 2019;179:2454–8.
doi: 10.1002/ajmg.a.61355
Shah N, Hou YC, Yu HC, Sainger R, Caskey CT, Venter JC, et al. Identification of misclassified ClinVar variants via disease population prevalence. Am J Hum Genet. 2018;102:609–19.
doi: 10.1016/j.ajhg.2018.02.019
Xiang J, Yang J, Chen L, Chen Q, Yang H, Sun C, et al. Reinterpretation of common pathogenic variants in ClinVar revealed a high proportion of downgrades. Sci Rep. 2020;10:331.
doi: 10.1038/s41598-019-57335-5
Boone PM, Campbell IM, Baggett BC, Soens ZT, Rao MM, Hixson PM, et al. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res. 2013;23:1383–94.
doi: 10.1101/gr.156075.113
Yuan B, Wang L, Liu P, Shaw C, Dai H, Cooper L, et al. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med. 2020;22:1633–41.
doi: 10.1038/s41436-020-0864-8
Liu B, Lu Y, Wu B, Yang L, Liu R, Wang H, et al. Survival motor neuron gene copy number analysis by exome sequencing: assisting spinal muscular atrophy diagnosis and carrier screening. J Mol Diagn. 2020;22:619–28.
doi: 10.1016/j.jmoldx.2020.01.015
Leo MC, McMullen C, Wilfond BS, Lynch FL, Reiss JA, Gilmore MJ, et al. Patients’ ratings of genetic conditions validate a taxonomy to simplify decisions about preconception carrier screening via genome sequencing. Am J Med Genet A. 2016;170:574–82.
doi: 10.1002/ajmg.a.37477

Auteurs

Hagar Mor-Shaked (H)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Jonathan Rips (J)

Department of Pediatrics, Hadassah Ein-Kerem Medical Center, Jerusalem, Israel.

Shiri Gershon Naamat (S)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Avichai Reich (A)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Orly Elpeleg (O)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Vardiella Meiner (V)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

Tamar Harel (T)

Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. tamarhe@hadassah.org.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH