Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences.


Journal

Epigenetics & chromatin
ISSN: 1756-8935
Titre abrégé: Epigenetics Chromatin
Pays: England
ID NLM: 101471619

Informations de publication

Date de publication:
23 11 2020
Historique:
received: 27 03 2020
accepted: 29 09 2020
entrez: 23 11 2020
pubmed: 24 11 2020
medline: 16 6 2021
Statut: epublish

Résumé

The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.

Sections du résumé

BACKGROUND
The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear.
RESULTS
Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity.
CONCLUSIONS
The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.

Identifiants

pubmed: 33225957
doi: 10.1186/s13072-020-00365-5
pii: 10.1186/s13072-020-00365-5
pmc: PMC7682024
doi:

Substances chimiques

Protozoan Proteins 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

50

Subventions

Organisme : Australian Research Council
ID : DP110100483
Pays : International
Organisme : National Health and Medical Research Council
ID : APP1128975
Pays : International

Références

BMC Genomics. 2017 Aug 23;18(1):656
pubmed: 28836940
Nat Biotechnol. 2009 Jan;27(1):66-75
pubmed: 19122651
PLoS One. 2014 Jun 17;9(6):e100183
pubmed: 24937593
Cell. 2007 May 18;129(4):823-37
pubmed: 17512414
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8695-700
pubmed: 12060701
FEBS J. 2017 Jan;284(2):237-257
pubmed: 27860263
Mol Microbiol. 2013 Nov;90(3):519-37
pubmed: 23980881
BMC Genomics. 2012 Jan 03;13:1
pubmed: 22214261
Genome Res. 2012 Sep;22(9):1798-812
pubmed: 22955990
Genome Res. 2007 Jun;17(6):691-707
pubmed: 17567990
Bioinformatics. 2010 Sep 1;26(17):2204-7
pubmed: 20639541
Mol Biochem Parasitol. 1996 Nov 25;82(2):207-15
pubmed: 8946386
Cell Host Microbe. 2015 Jun 10;17(6):741-51
pubmed: 26067602
Mol Cell. 2015 Aug 6;59(3):502-11
pubmed: 26212453
Nat Genet. 2008 Jul;40(7):897-903
pubmed: 18552846
Cell Stem Cell. 2012 Nov 2;11(5):633-48
pubmed: 22981823
Cell Rep. 2016 Mar 15;14(10):2463-75
pubmed: 26947071
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
pubmed: 21106759
PLoS Pathog. 2013 Feb;9(2):e1003170
pubmed: 23468622
Sci Rep. 2017 Jan 16;7:40655
pubmed: 28091569
Nature. 2007 Jun 14;447(7146):799-816
pubmed: 17571346
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90
pubmed: 16344463
Nucleic Acids Res. 2016 Mar 18;44(5):2110-24
pubmed: 26578577
Epigenetics Chromatin. 2015 Sep 17;8:32
pubmed: 26388940
Int J Parasitol. 2011 Jan;41(1):71-80
pubmed: 20816844
Cell Host Microbe. 2017 Jun 14;21(6):731-741.e10
pubmed: 28618269
Cell Host Microbe. 2018 Apr 11;23(4):557-569.e9
pubmed: 29649445
Genome Res. 2012 Sep;22(9):1813-31
pubmed: 22955991
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
PLoS Pathog. 2011 Feb;7(2):e1001292
pubmed: 21379342
Nat Genet. 2012 Jan 08;44(2):148-56
pubmed: 22231485
Nucleic Acids Res. 2013 May 1;41(10):e108
pubmed: 23558742
EMBO J. 2011 Jan 19;30(2):249-62
pubmed: 21131905
Nat Struct Mol Biol. 2011 Jan;18(1):91-3
pubmed: 21131980
Cell. 2004 Jun 11;117(6):721-33
pubmed: 15186774
Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7289-94
pubmed: 8692985
BMC Genomics. 2014 Apr 15;15:284
pubmed: 24735413
Nucleic Acids Res. 2016 Mar 18;44(5):e45
pubmed: 26578583
Nat Commun. 2018 May 15;9(1):1910
pubmed: 29765020
Mol Microbiol. 2013 Mar;87(5):1061-73
pubmed: 23320541
Genes Dev. 2016 Jun 15;30(12):1423-39
pubmed: 27340175
Elife. 2018 Mar 27;7:
pubmed: 29580379
Genome Res. 2015 Nov;25(11):1757-70
pubmed: 26314830
J Biol Chem. 2015 Nov 27;290(48):28760-77
pubmed: 26451043
Genome Res. 2014 Jun;24(6):974-88
pubmed: 24671853
Parasitol Res. 2003 Jan;89(2):154-7
pubmed: 12489017
Nature. 2002 Oct 3;419(6906):498-511
pubmed: 12368864
Nature. 2013 Nov 14;503(7475):290-4
pubmed: 24141950
Genes Dev. 2015 Sep 15;29(18):1942-54
pubmed: 26385964
EMBO J. 2016 Nov 15;35(22):2435-2446
pubmed: 27797823
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Epigenetics Chromatin. 2015 Jul 31;8:26
pubmed: 26229551
J Parasitol. 1979 Jun;65(3):418-20
pubmed: 383936
Genes Dev. 2013 Oct 1;27(19):2109-24
pubmed: 24065740
Genome Biol. 2008;9(9):R137
pubmed: 18798982
PLoS Biol. 2018 Mar 12;16(3):e2004328
pubmed: 29529020
Nature. 2009 May 7;459(7243):108-12
pubmed: 19295514
Cell Host Microbe. 2017 Jan 11;21(1):11-22
pubmed: 28081440
Nat Genet. 2007 Mar;39(3):311-8
pubmed: 17277777
Nat Methods. 2018 Jul;15(7):475-476
pubmed: 29967506
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3473-3478
pubmed: 28289232
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91
pubmed: 24799436
Nature. 2011 May 5;473(7345):43-9
pubmed: 21441907
PLoS Biol. 2003 Oct;1(1):E5
pubmed: 12929205
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Nature. 2010 May 13;465(7295):182-7
pubmed: 20393465
Mol Biochem Parasitol. 2008 Nov;162(1):40-51
pubmed: 18692528
Genes Dev. 2005 Mar 1;19(5):542-52
pubmed: 15706033
J Proteome Res. 2016 Aug 5;15(8):2787-801
pubmed: 27291344
Nature. 2009 Feb 12;457(7231):854-8
pubmed: 19212405
Nucleic Acids Res. 2019 Dec 16;47(22):11574-11588
pubmed: 31728527
PLoS Pathog. 2016 Dec 29;12(12):e1006080
pubmed: 28033404
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
PLoS Pathog. 2009 Jan;5(1):e1000256
pubmed: 19119419
Mol Biochem Parasitol. 2002 Apr 30;121(1):87-98
pubmed: 11985865
Yeast. 2011 Sep;28(9):683-91
pubmed: 21815215
Mol Biol Evol. 2009 Jun;26(6):1299-307
pubmed: 19258451
Nucleic Acids Res. 2018 Oct 12;46(18):9414-9431
pubmed: 30016465
Sci Rep. 2017 Apr 4;7(1):607
pubmed: 28377601
Cell. 2005 Aug 26;122(4):517-27
pubmed: 16122420
Gene. 2006 Mar 15;369:53-65
pubmed: 16410041
PLoS Pathog. 2010 Dec 16;6(12):e1001223
pubmed: 21187892
Cell. 2005 Jan 28;120(2):169-81
pubmed: 15680324
Mol Biochem Parasitol. 1999 Mar 15;99(1):77-87
pubmed: 10215026
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Biochim Biophys Acta. 2007 Jul-Aug;1769(7-8):506-13
pubmed: 17570541
Nature. 2012 Jun 28;486(7404):496-501
pubmed: 22722846
Nat Commun. 2018 Jul 9;9(1):2656
pubmed: 29985403
Eukaryot Cell. 2009 Mar;8(3):327-38
pubmed: 19151330
Science. 1976 Aug 20;193(4254):673-5
pubmed: 781840
BMC Genomics. 2009 Dec 16;10:610
pubmed: 20015349
Genetics. 2012 May;191(1):7-20
pubmed: 22555441
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9655-60
pubmed: 19497874

Auteurs

Jingyi Tang (J)

Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.

Scott A Chisholm (SA)

School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
Bio21 Institute, Parkville, VIC, 3052, Australia.

Lee M Yeoh (LM)

Bio21 Institute, Parkville, VIC, 3052, Australia.
Peter Doherty Institute, Melbourne, VIC, 3000, Australia.
Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.

Paul R Gilson (PR)

Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.
Monash University, Melbourne, VIC, 3800, Australia.

Anthony T Papenfuss (AT)

Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.
Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia.

Karen P Day (KP)

Bio21 Institute, Parkville, VIC, 3052, Australia.
Peter Doherty Institute, Melbourne, VIC, 3000, Australia.
Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.

Michaela Petter (M)

Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
Erlangen University, 91054, Erlangen, Germany.

Michael F Duffy (MF)

Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. mduffy@unimelb.edu.au.
Bio21 Institute, Parkville, VIC, 3052, Australia. mduffy@unimelb.edu.au.
Peter Doherty Institute, Melbourne, VIC, 3000, Australia. mduffy@unimelb.edu.au.
Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia. mduffy@unimelb.edu.au.

Articles similaires

Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Animals Humans Mice Neoplasms Tumor Microenvironment

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals

Classifications MeSH