The barley pan-genome reveals the hidden legacy of mutation breeding.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
12 2020
Historique:
received: 03 04 2020
accepted: 09 09 2020
pubmed: 27 11 2020
medline: 3 2 2021
entrez: 26 11 2020
Statut: ppublish

Résumé

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'

Identifiants

pubmed: 33239781
doi: 10.1038/s41586-020-2947-8
pii: 10.1038/s41586-020-2947-8
pmc: PMC7759462
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

284-289

Subventions

Organisme : European Research Council
Pays : International

Commentaires et corrections

Type : CommentIn

Références

Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 6, 914–920 (2020).
pubmed: 32690893 doi: 10.1038/s41477-020-0733-0
Dawson, I. K. et al. Barley: a translational model for adaptation to climate change. New Phytol. 206, 913–931 (2015).
pubmed: 25605349 doi: 10.1111/nph.13266
Stein, N. & Muehlbauer, G. J. The Barley Genome (Springer, 2018).
International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).
doi: 10.1038/nature11543
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635 doi: 10.1038/nature22043
Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
pubmed: 31849336 pmcid: 6918601 doi: 10.1186/s13059-019-1899-5
Mascher, M. et al. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol. 15, R78 (2014).
pubmed: 24917130 pmcid: 4073093 doi: 10.1186/gb-2014-15-6-r78
Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 48, 1024–1030 (2016).
pubmed: 27428750 doi: 10.1038/ng.3612
Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).
pubmed: 30420647 doi: 10.1038/s41588-018-0266-x
Muñoz-Amatriaín, M. et al. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 14, R58 (2013).
pubmed: 23758725 pmcid: 3706897 doi: 10.1186/gb-2013-14-6-r58
Taketa, S. et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl Acad. Sci. USA 105, 4062–4067 (2008).
pubmed: 18316719 doi: 10.1073/pnas.0711034105 pmcid: 2268812
Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).
pubmed: 16172379 doi: 10.1073/pnas.0506758102 pmcid: 1216834
Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2019).
pubmed: 31729472 pmcid: 7402362 doi: 10.1038/s41576-019-0180-9
Danilevicz, M. F., Tay Fernandez, C. G., Marsh, J. I., Bayer, P. E. & Edwards, D. Plant pangenomics: approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18–25 (2020).
pubmed: 31982844 doi: 10.1016/j.pbi.2019.12.005
Monat, C., Schreiber, M., Stein, N. & Mascher, M. Prospects of pan-genomics in barley. Theor. Appl. Genet. 132, 785–796 (2019).
pubmed: 30446793 doi: 10.1007/s00122-018-3234-z
Coronado, M.-J., Hensel, G., Broeders, S., Otto, I. & Kumlehn, J. Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol. Plant. 27, 591–599 (2005).
doi: 10.1007/s11738-005-0063-x
Schreiber, M. et al. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise. G3 10, 1823–1827 (2020).
pubmed: 32241919 doi: 10.1534/g3.119.401010 pmcid: 7263683
Gottwald, S., Bauer, P., Komatsuda, T., Lundqvist, U. & Stein, N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res. Notes 2, 258 (2009).
pubmed: 20017921 pmcid: 2803498 doi: 10.1186/1756-0500-2-258
Mascher, M. et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76, 718–727 (2013).
pubmed: 23998490 pmcid: 4298792 doi: 10.1111/tpj.12319
Hübner, S. et al. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol. Ecol. 18, 1523–1536 (2009).
pubmed: 19368652 doi: 10.1111/j.1365-294X.2009.04106.x
Chikhi, R., Limasset, A. & Medvedev, P. Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics 32, i201–i208 (2016).
pubmed: 27307618 pmcid: 4908363 doi: 10.1093/bioinformatics/btw279
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
pubmed: 23587118 pmcid: 3626529 doi: 10.1186/2047-217X-1-18
Clavijo, B. J. et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885–896 (2017).
pubmed: 28420692 pmcid: 5411782 doi: 10.1101/gr.217117.116
Anderson, S. N. et al. Transposable elements contribute to dynamic genome content in maize. Plant J. 100, 1052–1065 (2019).
pubmed: 31381222 doi: 10.1111/tpj.14489
Brunner, S., Fengler, K., Morgante, M., Tingey, S. & Rafalski, A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360 (2005).
pubmed: 15659640 pmcid: 548811 doi: 10.1105/tpc.104.025627
Nattestad, M. & Schatz, M. C. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics 32, 3021–3023 (2016).
pubmed: 27318204 pmcid: 6191160 doi: 10.1093/bioinformatics/btw369
Gordon, S. P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 2184 (2017).
pubmed: 29259172 pmcid: 5736591 doi: 10.1038/s41467-017-02292-8
Yu, S. et al. A single nucleotide polymorphism of Nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol. Biol. Report. 34, 242–248 (2016).
doi: 10.1007/s11105-015-0911-9
Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).
pubmed: 30718880 doi: 10.1038/s41587-018-0007-9
Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).
pubmed: 22796960 doi: 10.1093/bioinformatics/bts444
Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).
pubmed: 16380716 doi: 10.1038/ng1702
Ekberg, I. Cytogenetic studies of three paracentric inversions in barley. Hereditas 76, 1–30 (1974).
pubmed: 4845173 doi: 10.1111/j.1601-5223.1974.tb01172.x
Ramage, R. & Suneson, C. Translocation-gene linkages on barley chromosome 7. Crop Sci. 1, 319–320 (1961).
doi: 10.2135/cropsci1961.0011183X000100050005x
Himmelbach, A. et al. Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large-genome plant species. Plant J. 96, 1309–1316 (2018).
pubmed: 30256471 doi: 10.1111/tpj.14109
Ederveen, A., Lai, Y., van Driel, M. A., Gerats, T. & Peters, J. L. Modulating crossover positioning by introducing large structural changes in chromosomes. BMC Genomics 16, 89 (2015).
pubmed: 25879408 pmcid: 4359564 doi: 10.1186/s12864-015-1276-z
Bouma, J. & Ohnoutka, Z. Importance and Application of the Mutant ‘Diamant’ in Spring Barley Breeding (IAEA, 1991).
Comadran, J. et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44, 1388–1392 (2012).
pubmed: 23160098 doi: 10.1038/ng.2447
Bustos-Korts, D. et al. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 99, 1172–1191 (2019).
pubmed: 31108005 pmcid: 6851764 doi: 10.1111/tpj.14414
Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).
pubmed: 31253974 doi: 10.1038/s41588-019-0443-6
Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148–158 (2020).
pubmed: 31787539 pmcid: 6988109 doi: 10.1016/j.tplants.2019.10.012
Dvorak, J., McGuire, P. E. & Cassidy, B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689 (1988).
doi: 10.1139/g88-115
Himmelbach, A., Walde, I., Mascher, M. & Stein, N. Tethered chromosome conformation capture sequencing in Triticeae: a valuable tool for genome assembly. Bio Protoc. 8, e2955 (2018).
doi: 10.21769/BioProtoc.2955 pubmed: 34395764 pmcid: 8328666
Padmarasu, S., Himmelbach, A., Mascher, M. & Stein, N. in Plant Long Non-Coding RNAs (eds Chekanova, J. & Wang, H.-L.) 441–472 (Springer, 2019).
Matsumoto, T. et al. Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol. 156, 20–28 (2011).
pubmed: 21415278 pmcid: 3091036 doi: 10.1104/pp.110.171579
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250 pmcid: 187518
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
pubmed: 15713233 pmcid: 553969 doi: 10.1186/1471-2105-6-31
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
pubmed: 26243257 pmcid: 4531804 doi: 10.1186/s13059-015-0721-2
Spannagl, M. et al. PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res. 44, D1141–D1147 (2016).
pubmed: 26527721 doi: 10.1093/nar/gkv1130
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).
pubmed: 18194517 pmcid: 2253517 doi: 10.1186/1471-2105-9-18
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Gutierrez-Gonzalez, J. J., Mascher, M., Poland, J. & Muehlbauer, G. J. Dense genotyping-by-sequencing linkage maps of two synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Sci. Rep. 9, 1793 (2019).
pubmed: 30741967 pmcid: 6370774 doi: 10.1038/s41598-018-38111-3
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).
pubmed: 29096012 doi: 10.1093/bioinformatics/btx699
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
R Core Team. R: A Language and Environment for Statistical Computing  http://www.R-project.org (R Foundation for Statistical Computing, 2013).
Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
Schwartz, S. et al. PipMaker—a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).
pubmed: 10779500 pmcid: 310868 doi: 10.1101/gr.10.4.577
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
pubmed: 21903627 pmcid: 3198575 doi: 10.1093/bioinformatics/btr509
Zheng, X. & Gogarten, S. SeqArray: big data management of genome-wide sequence variants. R package version 1.10.6  https://github.com/zhengxwen/SeqArray (accessed January 2017).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
pubmed: 23060615 pmcid: 3519454 doi: 10.1093/bioinformatics/bts606
Akbari, M. et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113, 1409–1420 (2006).
pubmed: 17033786 doi: 10.1007/s00122-006-0365-4
Hill, C. B. et al. Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley. Plant Biotechnol. J. 17, 932–944 (2019).
pubmed: 30407713 doi: 10.1111/pbi.13029
Van Ooijen, J. MapQTL 5, Software for the Mapping of Quantitative Trait Loci in Experimental Populations (Kyazma, 2004).
Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).
pubmed: 28945707 doi: 10.1038/nmeth.4432
Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).
pubmed: 23644548 doi: 10.1038/nmeth.2474
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Arend, D. et al. PGP repository: a plant phenomics and genomics data publication infrastructure. Database (Oxford) 2016, baw033 (2016).
doi: 10.1093/database/baw033
Arend, D. et al. e!DAL—a framework to store, share and publish research data. BMC Bioinformatics 15, 214 (2014).
pubmed: 24958009 pmcid: 4080583 doi: 10.1186/1471-2105-15-214

Auteurs

Murukarthick Jayakodi (M)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Sudharsan Padmarasu (S)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Georg Haberer (G)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Venkata Suresh Bonthala (VS)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Heidrun Gundlach (H)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Cécile Monat (C)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Thomas Lux (T)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Nadia Kamal (N)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Daniel Lang (D)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Axel Himmelbach (A)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Jennifer Ens (J)

Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Xiao-Qi Zhang (XQ)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.

Tefera T Angessa (TT)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.

Gaofeng Zhou (G)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.

Cong Tan (C)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.

Camilla Hill (C)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.

Penghao Wang (P)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.

Miriam Schreiber (M)

The James Hutton Institute, Dundee, UK.

Lori B Boston (LB)

HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA.

Christopher Plott (C)

HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA.

Jerry Jenkins (J)

HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA.

Yu Guo (Y)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Anne Fiebig (A)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Hikmet Budak (H)

Montana BioAg Inc, Missoula, MT, USA.

Dongdong Xu (D)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China.

Jing Zhang (J)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China.

Chunchao Wang (C)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China.

Jane Grimwood (J)

HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA.

Jeremy Schmutz (J)

HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA.

Ganggang Guo (G)

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China.

Guoping Zhang (G)

College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.

Keiichi Mochida (K)

Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.

Takashi Hirayama (T)

Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.

Kazuhiro Sato (K)

Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.

Kenneth J Chalmers (KJ)

School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia.

Peter Langridge (P)

School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia.

Robbie Waugh (R)

The James Hutton Institute, Dundee, UK.
School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia.
School of Life Sciences, University of Dundee, Dundee, UK.

Curtis J Pozniak (CJ)

Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Uwe Scholz (U)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.

Klaus F X Mayer (KFX)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.

Manuel Spannagl (M)

Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.

Chengdao Li (C)

Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia. C.Li@murdoch.edu.au.
Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia. C.Li@murdoch.edu.au.
Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China. C.Li@murdoch.edu.au.

Martin Mascher (M)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. mascher@ipk-gatersleben.de.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. mascher@ipk-gatersleben.de.

Nils Stein (N)

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. stein@ipk-gatersleben.de.
Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany. stein@ipk-gatersleben.de.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Populus Soil Microbiology Soil Microbiota Fungi

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH