The barley pan-genome reveals the hidden legacy of mutation breeding.
Chromosome Inversion
/ genetics
Chromosome Mapping
Chromosomes, Plant
/ genetics
Genetic Loci
/ genetics
Genome, Plant
/ genetics
Genotype
Hordeum
/ classification
Internationality
Mutation
Plant Breeding
Polymorphism, Genetic
/ genetics
Reference Standards
Seed Bank
Sequence Inversion
Whole Genome Sequencing
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
03
04
2020
accepted:
09
09
2020
pubmed:
27
11
2020
medline:
3
2
2021
entrez:
26
11
2020
Statut:
ppublish
Résumé
Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'
Identifiants
pubmed: 33239781
doi: 10.1038/s41586-020-2947-8
pii: 10.1038/s41586-020-2947-8
pmc: PMC7759462
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
284-289Subventions
Organisme : European Research Council
Pays : International
Commentaires et corrections
Type : CommentIn
Références
Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 6, 914–920 (2020).
pubmed: 32690893
doi: 10.1038/s41477-020-0733-0
Dawson, I. K. et al. Barley: a translational model for adaptation to climate change. New Phytol. 206, 913–931 (2015).
pubmed: 25605349
doi: 10.1111/nph.13266
Stein, N. & Muehlbauer, G. J. The Barley Genome (Springer, 2018).
International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).
doi: 10.1038/nature11543
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
pubmed: 28447635
doi: 10.1038/nature22043
Monat, C. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
pubmed: 31849336
pmcid: 6918601
doi: 10.1186/s13059-019-1899-5
Mascher, M. et al. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol. 15, R78 (2014).
pubmed: 24917130
pmcid: 4073093
doi: 10.1186/gb-2014-15-6-r78
Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 48, 1024–1030 (2016).
pubmed: 27428750
doi: 10.1038/ng.3612
Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).
pubmed: 30420647
doi: 10.1038/s41588-018-0266-x
Muñoz-Amatriaín, M. et al. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 14, R58 (2013).
pubmed: 23758725
pmcid: 3706897
doi: 10.1186/gb-2013-14-6-r58
Taketa, S. et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl Acad. Sci. USA 105, 4062–4067 (2008).
pubmed: 18316719
doi: 10.1073/pnas.0711034105
pmcid: 2268812
Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).
pubmed: 16172379
doi: 10.1073/pnas.0506758102
pmcid: 1216834
Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2019).
pubmed: 31729472
pmcid: 7402362
doi: 10.1038/s41576-019-0180-9
Danilevicz, M. F., Tay Fernandez, C. G., Marsh, J. I., Bayer, P. E. & Edwards, D. Plant pangenomics: approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18–25 (2020).
pubmed: 31982844
doi: 10.1016/j.pbi.2019.12.005
Monat, C., Schreiber, M., Stein, N. & Mascher, M. Prospects of pan-genomics in barley. Theor. Appl. Genet. 132, 785–796 (2019).
pubmed: 30446793
doi: 10.1007/s00122-018-3234-z
Coronado, M.-J., Hensel, G., Broeders, S., Otto, I. & Kumlehn, J. Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol. Plant. 27, 591–599 (2005).
doi: 10.1007/s11738-005-0063-x
Schreiber, M. et al. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise. G3 10, 1823–1827 (2020).
pubmed: 32241919
doi: 10.1534/g3.119.401010
pmcid: 7263683
Gottwald, S., Bauer, P., Komatsuda, T., Lundqvist, U. & Stein, N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res. Notes 2, 258 (2009).
pubmed: 20017921
pmcid: 2803498
doi: 10.1186/1756-0500-2-258
Mascher, M. et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 76, 718–727 (2013).
pubmed: 23998490
pmcid: 4298792
doi: 10.1111/tpj.12319
Hübner, S. et al. Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol. Ecol. 18, 1523–1536 (2009).
pubmed: 19368652
doi: 10.1111/j.1365-294X.2009.04106.x
Chikhi, R., Limasset, A. & Medvedev, P. Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics 32, i201–i208 (2016).
pubmed: 27307618
pmcid: 4908363
doi: 10.1093/bioinformatics/btw279
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
pubmed: 23587118
pmcid: 3626529
doi: 10.1186/2047-217X-1-18
Clavijo, B. J. et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885–896 (2017).
pubmed: 28420692
pmcid: 5411782
doi: 10.1101/gr.217117.116
Anderson, S. N. et al. Transposable elements contribute to dynamic genome content in maize. Plant J. 100, 1052–1065 (2019).
pubmed: 31381222
doi: 10.1111/tpj.14489
Brunner, S., Fengler, K., Morgante, M., Tingey, S. & Rafalski, A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360 (2005).
pubmed: 15659640
pmcid: 548811
doi: 10.1105/tpc.104.025627
Nattestad, M. & Schatz, M. C. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics 32, 3021–3023 (2016).
pubmed: 27318204
pmcid: 6191160
doi: 10.1093/bioinformatics/btw369
Gordon, S. P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 2184 (2017).
pubmed: 29259172
pmcid: 5736591
doi: 10.1038/s41467-017-02292-8
Yu, S. et al. A single nucleotide polymorphism of Nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol. Biol. Report. 34, 242–248 (2016).
doi: 10.1007/s11105-015-0911-9
Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).
pubmed: 30718880
doi: 10.1038/s41587-018-0007-9
Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).
pubmed: 22796960
doi: 10.1093/bioinformatics/bts444
Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).
pubmed: 16380716
doi: 10.1038/ng1702
Ekberg, I. Cytogenetic studies of three paracentric inversions in barley. Hereditas 76, 1–30 (1974).
pubmed: 4845173
doi: 10.1111/j.1601-5223.1974.tb01172.x
Ramage, R. & Suneson, C. Translocation-gene linkages on barley chromosome 7. Crop Sci. 1, 319–320 (1961).
doi: 10.2135/cropsci1961.0011183X000100050005x
Himmelbach, A. et al. Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large-genome plant species. Plant J. 96, 1309–1316 (2018).
pubmed: 30256471
doi: 10.1111/tpj.14109
Ederveen, A., Lai, Y., van Driel, M. A., Gerats, T. & Peters, J. L. Modulating crossover positioning by introducing large structural changes in chromosomes. BMC Genomics 16, 89 (2015).
pubmed: 25879408
pmcid: 4359564
doi: 10.1186/s12864-015-1276-z
Bouma, J. & Ohnoutka, Z. Importance and Application of the Mutant ‘Diamant’ in Spring Barley Breeding (IAEA, 1991).
Comadran, J. et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet. 44, 1388–1392 (2012).
pubmed: 23160098
doi: 10.1038/ng.2447
Bustos-Korts, D. et al. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 99, 1172–1191 (2019).
pubmed: 31108005
pmcid: 6851764
doi: 10.1111/tpj.14414
Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).
pubmed: 31253974
doi: 10.1038/s41588-019-0443-6
Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148–158 (2020).
pubmed: 31787539
pmcid: 6988109
doi: 10.1016/j.tplants.2019.10.012
Dvorak, J., McGuire, P. E. & Cassidy, B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689 (1988).
doi: 10.1139/g88-115
Himmelbach, A., Walde, I., Mascher, M. & Stein, N. Tethered chromosome conformation capture sequencing in Triticeae: a valuable tool for genome assembly. Bio Protoc. 8, e2955 (2018).
doi: 10.21769/BioProtoc.2955
pubmed: 34395764
pmcid: 8328666
Padmarasu, S., Himmelbach, A., Mascher, M. & Stein, N. in Plant Long Non-Coding RNAs (eds Chekanova, J. & Wang, H.-L.) 441–472 (Springer, 2019).
Matsumoto, T. et al. Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol. 156, 20–28 (2011).
pubmed: 21415278
pmcid: 3091036
doi: 10.1104/pp.110.171579
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250
pmcid: 187518
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
pubmed: 15713233
pmcid: 553969
doi: 10.1186/1471-2105-6-31
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
pubmed: 26243257
pmcid: 4531804
doi: 10.1186/s13059-015-0721-2
Spannagl, M. et al. PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res. 44, D1141–D1147 (2016).
pubmed: 26527721
doi: 10.1093/nar/gkv1130
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).
pubmed: 18194517
pmcid: 2253517
doi: 10.1186/1471-2105-9-18
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Gutierrez-Gonzalez, J. J., Mascher, M., Poland, J. & Muehlbauer, G. J. Dense genotyping-by-sequencing linkage maps of two synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Sci. Rep. 9, 1793 (2019).
pubmed: 30741967
pmcid: 6370774
doi: 10.1038/s41598-018-38111-3
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).
pubmed: 29096012
doi: 10.1093/bioinformatics/btx699
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2013).
Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
Schwartz, S. et al. PipMaker—a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).
pubmed: 10779500
pmcid: 310868
doi: 10.1101/gr.10.4.577
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
pubmed: 21903627
pmcid: 3198575
doi: 10.1093/bioinformatics/btr509
Zheng, X. & Gogarten, S. SeqArray: big data management of genome-wide sequence variants. R package version 1.10.6 https://github.com/zhengxwen/SeqArray (accessed January 2017).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
pubmed: 23060615
pmcid: 3519454
doi: 10.1093/bioinformatics/bts606
Akbari, M. et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113, 1409–1420 (2006).
pubmed: 17033786
doi: 10.1007/s00122-006-0365-4
Hill, C. B. et al. Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley. Plant Biotechnol. J. 17, 932–944 (2019).
pubmed: 30407713
doi: 10.1111/pbi.13029
Van Ooijen, J. MapQTL 5, Software for the Mapping of Quantitative Trait Loci in Experimental Populations (Kyazma, 2004).
Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).
pubmed: 28945707
doi: 10.1038/nmeth.4432
Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).
pubmed: 23644548
doi: 10.1038/nmeth.2474
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Arend, D. et al. PGP repository: a plant phenomics and genomics data publication infrastructure. Database (Oxford) 2016, baw033 (2016).
doi: 10.1093/database/baw033
Arend, D. et al. e!DAL—a framework to store, share and publish research data. BMC Bioinformatics 15, 214 (2014).
pubmed: 24958009
pmcid: 4080583
doi: 10.1186/1471-2105-15-214