Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation.
Adenomatous Polyposis Coli
/ genetics
Amino Acid Motifs
Amino Acid Sequence
Animals
Cell Line, Tumor
Cell Proliferation
/ genetics
Colorectal Neoplasms
/ genetics
Down-Regulation
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Humans
Lysine
/ analogs & derivatives
Mice, Nude
Open Reading Frames
/ genetics
Oxidoreductases Acting on CH-NH Group Donors
/ antagonists & inhibitors
Peptide Initiation Factors
/ chemistry
Peptides
/ metabolism
Polyamines
/ metabolism
Protein Biosynthesis
Proto-Oncogene Proteins c-myc
/ metabolism
RNA-Binding Proteins
/ chemistry
Eukaryotic Translation Initiation Factor 5A
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
10 12 2020
10 12 2020
Historique:
received:
30
07
2020
accepted:
23
10
2020
revised:
22
10
2020
entrez:
11
12
2020
pubmed:
12
12
2020
medline:
10
4
2021
Statut:
epublish
Résumé
Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APC
Identifiants
pubmed: 33303756
doi: 10.1038/s41419-020-03174-6
pii: 10.1038/s41419-020-03174-6
pmc: PMC7729396
doi:
Substances chimiques
Peptide Initiation Factors
0
Peptides
0
Polyamines
0
Proto-Oncogene Proteins c-myc
0
RNA-Binding Proteins
0
hypusine
3874VXF092
Oxidoreductases Acting on CH-NH Group Donors
EC 1.5.-
deoxyhypusine synthase
EC 1.5.1.-
Lysine
K3Z4F929H6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1045Références
J Cancer Res Clin Oncol. 2013 Apr;139(4):691-702
pubmed: 23322277
Cell Cycle. 2014;13(21):3404-13
pubmed: 25485584
Int J Oncol. 2019 Feb;54(2):505-514
pubmed: 30483764
Dev Cell. 2015 Oct 12;35(1):21-35
pubmed: 26460945
Oncotarget. 2016 Feb 23;7(8):9538-49
pubmed: 26843621
Cancer Discov. 2015 Jul;5(7):768-781
pubmed: 25934076
Sci Rep. 2017 Mar 09;7:44079
pubmed: 28276480
Mol Biol Cell. 2009 Dec;20(23):4885-98
pubmed: 19812253
Biochim Biophys Acta. 2015 Jul;1849(7):836-44
pubmed: 25979826
J Biol Chem. 2018 Nov 30;293(48):18710-18718
pubmed: 30257869
J Biol Chem. 2018 Nov 30;293(48):18719-18729
pubmed: 30323064
N Engl J Med. 2009 Dec 17;361(25):2449-60
pubmed: 20018966
Biomed Pharmacother. 2018 Apr;100:168-175
pubmed: 29428664
Science. 1998 Sep 4;281(5382):1509-12
pubmed: 9727977
Genes Dev. 2003 May 1;17(9):1115-29
pubmed: 12695333
Cancers (Basel). 2019 Jan 27;11(2):
pubmed: 30691222
Cancer Res. 2018 Mar 15;78(6):1444-1456
pubmed: 29321164
Cell. 1996 Oct 18;87(2):159-70
pubmed: 8861899
Cell. 2019 Jan 24;176(3):491-504.e21
pubmed: 30612740
Science. 1992 May 1;256(5057):668-70
pubmed: 1350108
Oncogenesis. 2013 Sep 16;2:e71
pubmed: 24042735
J Biochem. 2006 Feb;139(2):161-9
pubmed: 16452303
Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7804-8
pubmed: 8356088
Biochemistry (Mosc). 2018 Aug;83(8):863-873
pubmed: 30208826
Clin Colorectal Cancer. 2020 Sep;19(3):165-177
pubmed: 32507561
Science. 1997 Mar 21;275(5307):1787-90
pubmed: 9065402
Mol Cell. 2013 Jul 11;51(1):35-45
pubmed: 23727016
J Biol Chem. 2018 Nov 30;293(48):18770-18778
pubmed: 30355737
Int J Mol Sci. 2020 Jun 27;21(13):
pubmed: 32605139
Genome Biol. 2003;4(10):R69
pubmed: 14519204
Mol Cell. 2017 Apr 20;66(2):194-205.e5
pubmed: 28392174
Med Sci (Basel). 2018 Feb 08;6(1):
pubmed: 29419804
Nat Rev Cancer. 2018 Nov;18(11):681-695
pubmed: 30181570
J Biol Chem. 2010 Apr 23;285(17):12474-81
pubmed: 20181941
Cancer. 2005 Nov 15;104(10):2035-47
pubmed: 16206296
Cell. 1990 Jun 1;61(5):759-67
pubmed: 2188735
Cancer Cell. 2005 May;7(5):433-44
pubmed: 15894264
Cancer Res. 2009 Jan 15;69(2):547-53
pubmed: 19147568
Cell Rep. 2019 Dec 3;29(10):3134-3146.e6
pubmed: 31801078
Gut. 2017 Apr;66(4):683-691
pubmed: 26818619
Am J Cancer Res. 2019 Aug 01;9(8):1830-1845
pubmed: 31497362
Cell Rep. 2020 Feb 11;30(6):1735-1752.e7
pubmed: 32049007
Nucleic Acids Res. 2017 Jul 7;45(12):7326-7338
pubmed: 28549188
Mol Cell. 2019 Oct 3;76(1):110-125.e9
pubmed: 31474573
EMBO Rep. 2018 Jun;19(6):
pubmed: 29712776
Cell Oncol (Dordr). 2014 Dec;37(6):387-98
pubmed: 25315710
Mol Cell Biol. 1999 Jan;19(1):1-11
pubmed: 9858526
Nature. 2012 Jul 18;487(7407):330-7
pubmed: 22810696
Oncogenesis. 2020 May 5;9(5):44
pubmed: 32371878
Nat Commun. 2016 Jan 05;7:10153
pubmed: 26729287