Genes associated with cognitive performance in the Morris water maze: an RNA-seq study.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 12 2020
16 12 2020
Historique:
received:
26
06
2020
accepted:
25
11
2020
entrez:
17
12
2020
pubmed:
18
12
2020
medline:
29
4
2021
Statut:
epublish
Résumé
Learning and memory are among higher-order cognitive functions that are based on numerous molecular processes including changes in the expression of genes. To identify genes associated with learning and memory formation, here, we used the RNA-seq (high-throughput mRNA sequencing) technology to compare hippocampal transcriptomes between mice with high and low Morris water maze (MWM) cognitive performance. We identified 88 differentially expressed genes (DEGs) and 24 differentially alternatively spliced transcripts between the high- and low-MWM-performance mice. Although the sets of DEGs and differentially alternatively spliced transcripts did not overlap, both were found to be enriched with genes related to the same type of biological processes: trans-synaptic signaling, cognition, and glutamatergic transmission. These findings were supported by the results of weighted-gene co-expression network analysis (WGCNA) revealing the enrichment of MWM-cognitive-performance-correlating gene modules with very similar Gene Ontology terms. High-MWM-performance mice manifested mostly higher expression of the genes associated with glutamatergic transmission and long-term potentiation implementation, which are processes necessary for memory acquisition and consolidation. In this set, there were genes participating in the regulation of trans-synaptic signaling, primarily AMPA receptor signaling (Nrn1, Nptx1, Homer3, Prkce, Napa, Camk2b, Syt7, and Nrgn) and calcium turnover (Hpca, Caln1, Orai2, Cpne4, and Cpne9). In high-MWM-performance mice, we also demonstrated significant upregulation of the "flip" splice variant of Gria1 and Gria2 transcripts encoding subunits of AMPA receptor. Altogether, our data helped to identify specific genes in the hippocampus that are associated with learning and long-term memory. We hypothesized that the differences in MWM cognitive performance between the mouse groups are linked with increased long-term potentiation, which is mainly mediated by increased glutamatergic transmission, primarily AMPA receptor signaling.
Identifiants
pubmed: 33328525
doi: 10.1038/s41598-020-78997-6
pii: 10.1038/s41598-020-78997-6
pmc: PMC7744575
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
22078Références
J Neurosci. 2007 Aug 29;27(35):9380-91
pubmed: 17728451
Neurobiol Learn Mem. 2013 Nov;106:40-7
pubmed: 23831672
Neuropsychologia. 2013 Aug;51(10):2026-42
pubmed: 23806840
Elife. 2018 Sep 10;7:
pubmed: 30198481
Nature. 2015 Feb 5;518(7537):61-7
pubmed: 25581794
Neurobiol Learn Mem. 2019 Apr;160:11-20
pubmed: 29331447
Neuron. 2007 Jul 5;55(1):87-102
pubmed: 17610819
Nat Neurosci. 2003 Feb;6(2):136-43
pubmed: 12536214
Hippocampus. 2005;15(2):260-72
pubmed: 15523608
Sci Rep. 2018 Jun 11;8(1):8868
pubmed: 29892006
Neuron. 2003 Jul 31;39(3):513-28
pubmed: 12895424
Science. 2006 Aug 25;313(5790):1093-7
pubmed: 16931756
J Neurosci Res. 2003 Mar 15;71(6):763-8
pubmed: 12605401
Neuroscience. 2007 Mar 16;145(2):393-402
pubmed: 17207577
Nat Rev Neurosci. 2007 Feb;8(2):101-13
pubmed: 17237803
IUBMB Life. 2010 Aug;62(8):597-606
pubmed: 20665622
Brain Res. 1996 Apr 15;716(1-2):202-6
pubmed: 8738240
Trends Neurosci. 2019 Jan;42(1):14-22
pubmed: 30391015
Philos Trans R Soc Lond B Biol Sci. 2018 Mar 19;373(1742):
pubmed: 29352036
Eur J Med Chem. 2019 Mar 15;166:369-380
pubmed: 30735902
Annu Rev Biophys. 2018 May 20;47:469-497
pubmed: 29792815
Science. 1994 Nov 11;266(5187):1059-62
pubmed: 7973663
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8192-7
pubmed: 15150407
Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205
pubmed: 31114916
Nature. 2017 Apr 20;544(7650):316-321
pubmed: 28355182
Neuron. 2012 Nov 8;76(3):503-10
pubmed: 23141062
Biol Psychiatry. 2011 Aug 15;70(4):308-9
pubmed: 21791257
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1510-4
pubmed: 7878010
Neuron. 2003 Jun 19;38(6):965-76
pubmed: 12818181
J Psychiatry Neurosci. 2009 Jan;34(1):41-54
pubmed: 19125212
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Neurosci Methods. 1984 May;11(1):47-60
pubmed: 6471907
Genes Brain Behav. 2019 Jan;18(1):e12535
pubmed: 30378258
Zh Vyssh Nerv Deiat Im I P Pavlova. 2005 Jan-Feb;55(1):126-32
pubmed: 15828431
J Neurosci. 2015 Apr 1;35(13):5097-108
pubmed: 25834037
J Biol Chem. 1996 Jun 28;271(26):15527-32
pubmed: 8663017
Nature. 1982 Jun 24;297(5868):681-3
pubmed: 7088155
J Mol Neurosci. 2001 Dec;17(3):397-404
pubmed: 11859936
Mol Brain. 2019 Mar 18;12(1):22
pubmed: 30885239
Annu Rev Neurosci. 2012;35:227-47
pubmed: 22443508
Behav Brain Res. 2004 May 5;151(1-2):239-53
pubmed: 15084440
Front Synaptic Neurosci. 2011 Aug 29;3:4
pubmed: 22007168
Behav Brain Res. 2009 Mar 2;198(1):247-51
pubmed: 18996418
Neural Plast. 2018 Feb 8;2018:7292540
pubmed: 29593785
Neurobiol Learn Mem. 2003 Jul;80(1):80-95
pubmed: 12737936
PLoS One. 2012;7(10):e46683
pubmed: 23071613
J Gerontol A Biol Sci Med Sci. 2014 Nov;69(11):1311-24
pubmed: 24994846
Algorithms Mol Biol. 2007 Dec 11;2:15
pubmed: 18072973
Nat Neurosci. 2013 Feb;16(2):130-8
pubmed: 23354386
Cell. 2014 May 22;157(5):1216-29
pubmed: 24855953
Annu Rev Physiol. 2016;78:351-65
pubmed: 26863325
J Neurophysiol. 2002 Jun;87(6):2770-7
pubmed: 12037179
J Neurosci. 2004 Nov 24;24(47):10660-9
pubmed: 15564582
Trends Neurosci. 2002 Nov;25(11):578-88
pubmed: 12392933
Nucleic Acids Res. 2018 Jan 4;46(D1):D252-D259
pubmed: 29140464
Neurosci Biobehav Rev. 2018 May;88:187-200
pubmed: 29545166
Cereb Cortex. 2017 Feb 1;27(2):888-902
pubmed: 28057726
Physiol Behav. 2009 Jun 22;97(3-4):394-400
pubmed: 19303029
Mol Neurobiol. 2015;51(3):1071-88
pubmed: 24935719
Psychopharmacology (Berl). 2019 Jan;236(1):201-226
pubmed: 30604182
Neuron. 2019 Jun 5;102(5):976-992.e5
pubmed: 31053408
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3269-74
pubmed: 10077673
Science. 1990 Sep 28;249(4976):1580-5
pubmed: 1699275
Hippocampus. 2016 May;26(5):545-53
pubmed: 26743454
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Mol Psychiatry. 2018 Aug;23(8):1764-1772
pubmed: 29311665
Mol Neurobiol. 2018 Apr;55(4):3394-3407
pubmed: 28500512
Nat Rev Neurosci. 2017 May 18;18(6):347-361
pubmed: 28515491
Genome Res. 2012 Oct;22(10):2008-17
pubmed: 22722343
Biochim Biophys Acta. 2014 Jan;1839(1):13-24
pubmed: 24291638
Nat Neurosci. 2017 Oct 26;20(11):1434-1447
pubmed: 29073641
Neuroreport. 2001 Mar 26;12(4):673-7
pubmed: 11277561
J Neurosci. 2007 Jun 20;27(25):6729-39
pubmed: 17581960
Nat Neurosci. 2001 Aug;4(8):813-8
pubmed: 11477427
Neuron. 2017 May 17;94(4):713-730
pubmed: 28521126
J Neurosci. 2008 Jul 30;28(31):7820-7
pubmed: 18667614
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7
pubmed: 27141961
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Learn Mem. 2007 Oct 01;14(10):693-702
pubmed: 17911373
J Physiol. 2020 Jan 31;:
pubmed: 32004381
Brief Bioinform. 2020 Dec 1;21(6):2052-2065
pubmed: 31802105
Front Neuroendocrinol. 2019 Apr;53:100744
pubmed: 31004616
Front Mol Neurosci. 2017 Aug 30;10:275
pubmed: 28912681
Prog Neuropsychopharmacol Biol Psychiatry. 2020 Aug 15;:110068
pubmed: 32810572
J Neurosci. 2013 Jul 3;33(27):11061-9
pubmed: 23825411
Cell Rep. 2017 Jan 24;18(4):892-904
pubmed: 28122240
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601
pubmed: 25480548
Science. 2018 Nov 9;362(6415):
pubmed: 30409861
Elife. 2018 Jul 09;7:
pubmed: 29985126
Sci Rep. 2019 Apr 25;9(1):6403
pubmed: 31024034
PLoS One. 2012;7(7):e41275
pubmed: 22848456
Mol Brain. 2014 Feb 14;7:12
pubmed: 24528488
Nature. 2008 Oct 30;455(7217):1198-204
pubmed: 18815592
J Neurosci. 2002 Aug 1;22(15):6781-9
pubmed: 12151558
Neurosci Lett. 2018 Jul 27;680:77-87
pubmed: 28529173