Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
18 12 2020
Historique:
received: 11 05 2020
accepted: 17 11 2020
entrez: 19 12 2020
pubmed: 20 12 2020
medline: 22 6 2021
Statut: epublish

Résumé

Single-cell transcriptome analysis has been revolutionized by DNA barcodes that index cDNA libraries, allowing highly multiplexed analyses to be performed. Furthermore, DNA barcodes are being leveraged for spatial transcriptomes. Although spatial resolution relies on methods used to decode DNA barcodes, achieving single-molecule decoding remains a challenge. Here, we developed an in-house sequencing system inspired by a single-molecule sequencing system, HeliScope, to spatially decode DNA barcode molecules at single-molecule resolution. We benchmarked our system with 30 types of DNA barcode molecules and obtained an average read length of ~20 nt with an error rate of less than 5% per nucleotide, which was sufficient to spatially identify them. Additionally, we spatially identified DNA barcode molecules bound to antibodies at single-molecule resolution. Leveraging this, we devised a method, termed "molecular foot printing", showing potential for applying our system not only to spatial transcriptomics, but also to spatial proteomics.

Identifiants

pubmed: 33339962
doi: 10.1038/s42003-020-01499-8
pii: 10.1038/s42003-020-01499-8
pmc: PMC7749132
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

788

Références

Science. 2016 Jul 1;353(6294):78-82
pubmed: 27365449
Nature. 2009 Oct 8;461(7265):814-8
pubmed: 19776739
Nat Methods. 2017 Sep;14(9):865-868
pubmed: 28759029
DNA Res. 2019 Oct 1;26(5):391-398
pubmed: 31364694
ACS Synth Biol. 2019 May 17;8(5):1100-1111
pubmed: 30951289
Clin Chem. 2012 Apr;58(4):699-706
pubmed: 22278607
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Mob DNA. 2012 Feb 07;3(1):3
pubmed: 22313799
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Hum Immunol. 2015 Mar;76(2-3):166-75
pubmed: 25543015
Nature. 2014 Mar 27;507(7493):462-70
pubmed: 24670764
Nat Methods. 2009 Aug;6(8):593-5
pubmed: 19620973
Science. 2019 Mar 29;363(6434):1463-1467
pubmed: 30923225
Cell. 2015 May 21;161(5):1202-1214
pubmed: 26000488
Nat Nanotechnol. 2017 Dec;12(12):1169-1175
pubmed: 28892102
Science. 2018 Apr 13;360(6385):176-182
pubmed: 29545511
J Microsc. 2018 Sep;271(3):266-281
pubmed: 29797718
Cell. 2018 Aug 9;174(4):968-981.e15
pubmed: 30078711
Nat Methods. 2013 Nov;10(11):1096-8
pubmed: 24056875
Cell. 2019 Jun 27;178(1):229-241.e16
pubmed: 31230717
Nat Biotechnol. 2014 Jun;32(6):562-8
pubmed: 24727714
Nat Biotechnol. 2015 Jul;33(7):730-2
pubmed: 26098451
Nat Methods. 2014 Jun;11(6):683-8
pubmed: 24809628
Nature. 2010 Apr 15;464(7291):1012-7
pubmed: 20393556
BMC Biotechnol. 2017 Jan 17;17(1):6
pubmed: 28095828
Science. 2017 Aug 18;357(6352):661-667
pubmed: 28818938
Curr Protoc Mol Biol. 2010 Oct;Chapter 7:Unit7.10
pubmed: 20890904
Nat Rev Genet. 2019 May;20(5):257-272
pubmed: 30696980
Science. 2008 Apr 4;320(5872):106-9
pubmed: 18388294
Nano Lett. 2019 Apr 10;19(4):2668-2673
pubmed: 30896178
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Methods. 2010 Jan;7(1):47-9
pubmed: 19946276
Curr Issues Mol Biol. 2016;18:43-8
pubmed: 26154140
Nat Biotechnol. 2011 Jun 26;29(7):659-64
pubmed: 21706015
Nature. 2019 Apr;568(7751):235-239
pubmed: 30911168
Nucleic Acids Res. 2018 Feb 28;46(4):e22
pubmed: 29190363
Nat Chem. 2012 Oct;4(10):832-9
pubmed: 23000997
Sci Adv. 2017 Jun 21;3(6):e1602128
pubmed: 28691083
Nature. 2018 Jul;559(7715):643-645
pubmed: 30042544
Cell. 2015 May 21;161(5):1187-1201
pubmed: 26000487
Nat Methods. 2019 Oct;16(10):987-990
pubmed: 31501547
Nat Methods. 2014 Mar;11(3):313-8
pubmed: 24487583
Nat Methods. 2014 Feb;11(2):163-6
pubmed: 24363023

Auteurs

Yusuke Oguchi (Y)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan. yusuke.oguchi@riken.jp.
RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. yusuke.oguchi@riken.jp.
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. yusuke.oguchi@riken.jp.

Hirofumi Shintaku (H)

RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

Sotaro Uemura (S)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan. uemura@bs.s.u-tokyo.ac.jp.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH