Mutational and structural analysis of an ancestral fungal dye-decolorizing peroxidase.
D-type DyP
ancestral sequence reconstruction
crystal structure
dye-decolorizing peroxidase
heme coordination
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
15
12
2020
received:
16
10
2020
accepted:
22
12
2020
pubmed:
29
12
2020
medline:
23
7
2021
entrez:
28
12
2020
Statut:
ppublish
Résumé
Dye-decolorizing peroxidases (DyPs) constitute a superfamily of heme-containing peroxidases that are related neither to animal nor to plant peroxidase families. These are divided into four classes (types A, B, C, and D) based on sequence features. The active site of DyPs contains two highly conserved distal ligands, an aspartate and an arginine, the roles of which are still controversial. These ligands have mainly been studied in class A-C bacterial DyPs, largely because no effective recombinant expression systems have been developed for the fungal (D-type) DyPs. In this work, we employ ancestral sequence reconstruction (ASR) to resurrect a D-type DyP ancestor, AncDyPD-b1. Expression of AncDyPD-b1 in Escherichia coli results in large amounts of a heme-containing soluble protein and allows for the first mutagenesis study on the two distal ligands of a fungal DyP. UV-Vis and resonance Raman (RR) spectroscopic analyses, in combination with steady-state kinetics and the crystal structure, reveal fine pH-dependent details about the heme active site structure and show that both the aspartate (D222) and the arginine (R390) are crucial for hydrogen peroxide reduction. Moreover, the data indicate that these two residues play important but mechanistically different roles on the intraprotein long-range electron transfer process. DATABASE: Structural data are available in the PDB database under the accession number 7ANV.
Identifiants
pubmed: 33369202
doi: 10.1111/febs.15687
pmc: PMC8248431
doi:
Substances chimiques
Coloring Agents
0
Ligands
0
Aspartic Acid
30KYC7MIAI
Arginine
94ZLA3W45F
Hydrogen Peroxide
BBX060AN9V
Peroxidase
EC 1.11.1.7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3602-3618Informations de copyright
© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Arch Biochem Biophys. 2015 May 15;574:99-107
pubmed: 25797439
Biochem J. 2015 Mar 1;466(2):253-62
pubmed: 25495127
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
Cell Mol Life Sci. 2009 Apr;66(8):1387-403
pubmed: 19099183
Annu Rev Biophys. 2017 May 22;46:247-269
pubmed: 28301769
Syst Biol. 2003 Oct;52(5):696-704
pubmed: 14530136
J Ind Microbiol Biotechnol. 2014 Jan;41(1):1-7
pubmed: 24212472
Biochemistry. 2013 May 7;52(18):3074-84
pubmed: 23560556
J Biol Chem. 2013 Feb 8;288(6):4095-102
pubmed: 23235158
J Biol Chem. 2007 Dec 14;282(50):36652-8
pubmed: 17928290
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
pubmed: 21460441
Methods Enzymol. 1980;64:139-92
pubmed: 7374452
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67
pubmed: 21460454
Nat Struct Biol. 1997 Dec;4(12):1032-8
pubmed: 9406554
Nature. 2002 May 23;417(6887):463-8
pubmed: 12024218
Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433
pubmed: 29866821
J Mol Biol. 2011 May 6;408(3):379-98
pubmed: 21354424
Biochemistry. 2011 Jun 14;50(23):5096-107
pubmed: 21534568
Arch Biochem Biophys. 2020 Feb 15;680:108243
pubmed: 31899145
Appl Microbiol Biotechnol. 2010 May;86(5):1419-30
pubmed: 19967355
Biochemistry. 2015 Nov 3;54(43):6610-21
pubmed: 26431465
Arch Biochem Biophys. 2015 May 15;574:108-19
pubmed: 25575902
Molecules. 2019 Mar 27;24(7):
pubmed: 30934796
Arch Biochem Biophys. 2015 May 15;574:49-55
pubmed: 25655348
BMC Bioinformatics. 2005 Jul 02;6:167
pubmed: 15992409
Bioresour Bioprocess. 2019;6(1):20
pubmed: 31231605
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
Biochemistry. 2011 Jun 14;50(23):5108-19
pubmed: 21534572
J Biotechnol. 2016 Sep 10;233:181-9
pubmed: 27432633
Lett Appl Microbiol. 2021 Jan;72(1):13-23
pubmed: 32974921
Nat Struct Mol Biol. 2008 Sep;15(9):939-47
pubmed: 19172747
IUCrJ. 2014 May 30;1(Pt 4):213-20
pubmed: 25075342
Appl Biochem Biotechnol. 2016 Aug;179(8):1404-17
pubmed: 27106285
J Biol Chem. 2015 Sep 18;290(38):23447-63
pubmed: 26205819
J Theor Biol. 1965 Mar;8(2):357-66
pubmed: 5876245
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
Bioorg Chem. 2012 Aug;43:44-50
pubmed: 22137502
Bioinformatics. 2011 Apr 15;27(8):1164-5
pubmed: 21335321
J Biol Chem. 2012 Mar 23;287(13):10623-10630
pubmed: 22308037
Biotechnol Biofuels. 2017 Mar 16;10:67
pubmed: 28331543
Inorg Chem. 2019 Feb 4;58(3):2149-2157
pubmed: 30644741
Brief Bioinform. 2019 Jul 19;20(4):1160-1166
pubmed: 28968734
Chem Rev. 2001 Nov;101(11):3397-413
pubmed: 11749405
Molecules. 2020 Mar 27;25(7):
pubmed: 32230972
Arch Biochem Biophys. 2016 Mar 15;594:54-60
pubmed: 26901432
Nucleic Acids Res. 2013 Jan;41(Database issue):D441-4
pubmed: 23180785
AMB Express. 2018 Jul 17;8(1):119
pubmed: 30019324
Proteins. 2016 Jan;84(1):31-42
pubmed: 26492416
Appl Environ Microbiol. 1999 Mar;65(3):1029-35
pubmed: 10049859
Arch Biochem Biophys. 2013 Sep 15;537(2):161-7
pubmed: 23876237
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
J Mol Biol. 1968 Apr 28;33(2):491-7
pubmed: 5700707
ACS Chem Biol. 2012 Dec 21;7(12):2074-81
pubmed: 23054399
J Ind Microbiol Biotechnol. 2018 Feb;45(2):89-101
pubmed: 29270883
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97
pubmed: 29533234
J Biol Chem. 2011 Apr 29;286(17):14922-31
pubmed: 21324904
FEBS J. 2011 Jul;278(13):2387-94
pubmed: 21569205
Chemistry. 2019 Feb 21;25(11):2708-2712
pubmed: 30566756
Nature. 2018 Apr;556(7702):452-456
pubmed: 29670290