Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (Oryza sativa L.).


Journal

Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343

Informations de publication

Date de publication:
Mar 2021
Historique:
received: 17 05 2020
accepted: 08 11 2020
pubmed: 3 1 2021
medline: 2 3 2021
entrez: 2 1 2021
Statut: ppublish

Résumé

We reported that DGS1 plays a positive role in regulating grain size in rice and was regulated by OsBZR1. Grain size is an important agronomic trait that contributes to grain yield. However, the underlying molecular mechanisms that determine final grain size are still largely unknown. We isolated a rice mutant showing reduced grain size in a

Identifiants

pubmed: 33387175
doi: 10.1007/s11103-020-01096-7
pii: 10.1007/s11103-020-01096-7
doi:

Substances chimiques

Membrane Proteins 0
Plant Proteins 0
Transcription Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

405-417

Subventions

Organisme : Jiangsu Provincial Key Research and Development Program (CN)
ID : 2017YFD0100404
Organisme : Jiangsu Key Laboratory of Photonic Manufacturing Science and Technology (CN)
ID : BE2018388
Organisme : Key project for Jiangsu Agricultural New Variety Innovation
ID : PZCZ201701

Références

Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14–3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104:13839–13844. https://doi.org/10.1073/pnas.0706386104
doi: 10.1073/pnas.0706386104 pubmed: 17699623 pmcid: 1959469
Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427. https://doi.org/10.1111/j.1364-3703.2006.00346.x
doi: 10.1111/j.1364-3703.2006.00346.x pubmed: 20507457 pmcid: 20507457
Cheung MY et al (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159. https://doi.org/10.1093/jxb/erm272
doi: 10.1093/jxb/erm272 pubmed: 18182423
Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279. https://doi.org/10.1016/j.cub.2005.12.026
doi: 10.1016/j.cub.2005.12.026 pubmed: 16461280
Dong H et al (2017) Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev 31:197–208. https://doi.org/10.1101/gad.292235.116
doi: 10.1101/gad.292235.116 pubmed: 28167503
Duan EC et al (2019) OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell 31:1026–1042. https://doi.org/10.1105/tpc.19.00023
doi: 10.1105/tpc.19.00023 pubmed: 30914468 pmcid: 6533028
Fan C et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171. https://doi.org/10.1007/s00122-006-0218-1
doi: 10.1007/s00122-006-0218-1 pubmed: 16453132
Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484. https://doi.org/10.1016/0092-8674(91)90229-r
doi: 10.1016/0092-8674(91)90229-r pubmed: 1991318
Gao XY et al (2019) Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling. Plant Cell 31:1077–1093. https://doi.org/10.1105/tpc.18.00836
doi: 10.1105/tpc.18.00836 pubmed: 30923230 pmcid: 6533024
Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30:385–394. https://doi.org/10.1046/j.1365-313x.2002.01298.x
doi: 10.1046/j.1365-313x.2002.01298.x pubmed: 12028569
He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638. https://doi.org/10.1126/science.1107580
doi: 10.1126/science.1107580 pubmed: 15681342 pmcid: 2925132
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. https://doi.org/10.1046/j.1365-313x.1994.6020271.x
doi: 10.1046/j.1365-313x.1994.6020271.x pubmed: 7920717 pmcid: 7920717
Hu Z et al (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol 54:979–990. https://doi.org/10.1111/jipb.12008
doi: 10.1111/jipb.12008 pubmed: 23137285
Hu ZJ et al (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11:736–749. https://doi.org/10.1016/j.molp.2018.03.005
doi: 10.1016/j.molp.2018.03.005 pubmed: 29567449
Ishimaru K et al (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711. https://doi.org/10.1038/ng.2612
doi: 10.1038/ng.2612 pubmed: 23583977
Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977. https://doi.org/10.1104/pp.113.217703
doi: 10.1104/pp.113.217703 pubmed: 23771896 pmcid: 3729775
Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A 102:3117–3122. https://doi.org/10.1073/pnas.0409893102
doi: 10.1073/pnas.0409893102 pubmed: 15708974 pmcid: 549499
Kawasaki T, Nam J, Boyes DC, Holt BF 3rd, Hubert DA, Wiig A, Dangl JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44:258–270. https://doi.org/10.1111/j.1365-313X.2005.02525.x
doi: 10.1111/j.1365-313X.2005.02525.x pubmed: 16212605
Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355. https://doi.org/10.1111/j.1365-313X.2006.02782.x
doi: 10.1111/j.1365-313X.2006.02782.x pubmed: 16792696
Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51:92–104. https://doi.org/10.1111/j.1365-313X.2007.03120.x
doi: 10.1111/j.1365-313X.2007.03120.x pubmed: 17559513
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044
doi: 10.1093/mp/ssu044 pubmed: 24719468
Li QF, Lu J, Yu JW, Zhang CQ, He JX, Liu QQ (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Bba-Gene Regul Mech 1861:561–571. https://doi.org/10.1016/j.bbagrm.2018.04.003
doi: 10.1016/j.bbagrm.2018.04.003
Li Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269. https://doi.org/10.1038/ng.977
doi: 10.1038/ng.977 pubmed: 22019783
Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336. https://doi.org/10.1101/gad.463608
doi: 10.1101/gad.463608 pubmed: 18483219 pmcid: 2377187
Liu JF et al (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043. https://doi.org/10.1038/nplants.2017.43
doi: 10.1038/nplants.2017.43 pubmed: 28394310
Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016. https://doi.org/10.1007/s00425-007-0548-5
doi: 10.1007/s00425-007-0548-5 pubmed: 17549515
Mao H et al (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107:19579–19584. https://doi.org/10.1073/pnas.1014419107
doi: 10.1073/pnas.1014419107 pubmed: 20974950 pmcid: 2984220
McNellis TW, Torii KU, Deng XW (1996) Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. Plant Cell 8:1491–1503. https://doi.org/10.1105/tpc.8.9.1491
doi: 10.1105/tpc.8.9.1491 pubmed: 8837504 pmcid: 161293
McNellis TW, von Arnim AG, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6:1391–1400. https://doi.org/10.1105/tpc.6.10.1391
doi: 10.1105/tpc.6.10.1391 pubmed: 7994173 pmcid: 160528
Meng XB, Zhao WS, Lin RM, Wang M, Peng YL (2006) Molecular cloning and characterization of a rice blast-inducible RING-H2 type Zinc finger gene. DNA Seq 17:41–48. https://doi.org/10.1080/10425170500476509
doi: 10.1080/10425170500476509 pubmed: 16753816
Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102:3123–3128. https://doi.org/10.1073/pnas.0409858102
doi: 10.1073/pnas.0409858102 pubmed: 15708976 pmcid: 549491
Qi P et al (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22:1666–1680. https://doi.org/10.1038/cr.2012.151
doi: 10.1038/cr.2012.151 pubmed: 23147796 pmcid: 3515756
Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261. https://doi.org/10.1242/dev.02194
doi: 10.1242/dev.02194 pubmed: 16339187
Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A 100:9626–9631. https://doi.org/10.1073/pnas.1633697100
doi: 10.1073/pnas.1633697100 pubmed: 12883010 pmcid: 170968
Si L et al (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456. https://doi.org/10.1038/ng.3518
doi: 10.1038/ng.3518 pubmed: 26950093
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. https://doi.org/10.1038/ng2014
doi: 10.1038/ng2014 pubmed: 17417637
Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30. https://doi.org/10.1104/pp.104.052423
doi: 10.1104/pp.104.052423 pubmed: 15644464 pmcid: 548835
Takeda T et al (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520. https://doi.org/10.1046/j.1365-313x.2003.01648.x
doi: 10.1046/j.1365-313x.2003.01648.x pubmed: 12581309
Tong HN et al (2012) Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–2577. https://doi.org/10.1105/tpc.112.097394
doi: 10.1105/tpc.112.097394 pubmed: 3406904 pmcid: 3406904
Tsuge T et al (2001) Phytochrome-mediated control of COP1 gene expression in rice plants. Mol Genet Genomics 265:43–50. https://doi.org/10.1007/s004380000396
doi: 10.1007/s004380000396 pubmed: 11370871
Waghmare S, Lileikyte E, Karnik R, Goodman JK, Blatt MR, Jones AME (2018) SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol 178:1679–1688. https://doi.org/10.1104/pp.18.00832
doi: 10.1104/pp.18.00832 pubmed: 30348815 pmcid: 6288737
Wang S et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954. https://doi.org/10.1038/ng.2327
doi: 10.1038/ng.2327 pubmed: 22729225
Weng J et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209. https://doi.org/10.1038/cr.2008.307
doi: 10.1038/cr.2008.307 pubmed: 19015668
Xia T et al (2013) The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–3359. https://doi.org/10.1105/tpc.113.115063
doi: 10.1105/tpc.113.115063 pubmed: 24045020 pmcid: 3809536
Zhang C et al (2012a) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8:651–664. https://doi.org/10.1371/journal.pgen.1002686
doi: 10.1371/journal.pgen.1002686
Zhang X et al (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109:21534–21539. https://doi.org/10.1073/pnas.1219776110
doi: 10.1073/pnas.1219776110 pubmed: 23236132 pmcid: 3535600
Zhang Y et al (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929. https://doi.org/10.1105/tpc.106.048488
doi: 10.1105/tpc.106.048488 pubmed: 17573536 pmcid: 1955734
Zhu XL et al (2015) Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J 82:570–581. https://doi.org/10.1111/tpj.12820
doi: 10.1111/tpj.12820 pubmed: 25754973

Auteurs

Xingjie Zhu (X)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Shengzhong Zhang (S)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Yaping Chen (Y)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Changlin Mou (C)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Yunshuai Huang (Y)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Xi Liu (X)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Jingli Ji (J)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Jiangfeng Yu (J)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Qixian Hao (Q)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Chunyan Yang (C)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Mengying Cai (M)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Thanhliem Nguyen (T)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam.

Weihan Song (W)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Ping Wang (P)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Hui Dong (H)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Shijia Liu (S)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.

Ling Jiang (L)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China. jiangling@njau.edu.cn.

Jianmin Wan (J)

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China. wanjm@njau.edu.cn.
National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. wanjm@njau.edu.cn.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH