Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (Oryza sativa L.).
Amino Acid Sequence
Base Sequence
Edible Grain
/ genetics
Gene Expression Regulation, Plant
Membrane Proteins
/ genetics
Microscopy, Electron, Scanning
Mutation
Oryza
/ genetics
Plant Proteins
/ genetics
Plants, Genetically Modified
RNA Interference
Sequence Homology, Amino Acid
Sequence Homology, Nucleic Acid
Transcription Factors
/ genetics
DGS1
Grain size
Oryza sativa
OsBZR1
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
17
05
2020
accepted:
08
11
2020
pubmed:
3
1
2021
medline:
2
3
2021
entrez:
2
1
2021
Statut:
ppublish
Résumé
We reported that DGS1 plays a positive role in regulating grain size in rice and was regulated by OsBZR1. Grain size is an important agronomic trait that contributes to grain yield. However, the underlying molecular mechanisms that determine final grain size are still largely unknown. We isolated a rice mutant showing reduced grain size in a
Identifiants
pubmed: 33387175
doi: 10.1007/s11103-020-01096-7
pii: 10.1007/s11103-020-01096-7
doi:
Substances chimiques
Membrane Proteins
0
Plant Proteins
0
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
405-417Subventions
Organisme : Jiangsu Provincial Key Research and Development Program (CN)
ID : 2017YFD0100404
Organisme : Jiangsu Key Laboratory of Photonic Manufacturing Science and Technology (CN)
ID : BE2018388
Organisme : Key project for Jiangsu Agricultural New Variety Innovation
ID : PZCZ201701
Références
Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14–3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104:13839–13844. https://doi.org/10.1073/pnas.0706386104
doi: 10.1073/pnas.0706386104
pubmed: 17699623
pmcid: 1959469
Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427. https://doi.org/10.1111/j.1364-3703.2006.00346.x
doi: 10.1111/j.1364-3703.2006.00346.x
pubmed: 20507457
pmcid: 20507457
Cheung MY et al (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159. https://doi.org/10.1093/jxb/erm272
doi: 10.1093/jxb/erm272
pubmed: 18182423
Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279. https://doi.org/10.1016/j.cub.2005.12.026
doi: 10.1016/j.cub.2005.12.026
pubmed: 16461280
Dong H et al (2017) Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev 31:197–208. https://doi.org/10.1101/gad.292235.116
doi: 10.1101/gad.292235.116
pubmed: 28167503
Duan EC et al (2019) OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell 31:1026–1042. https://doi.org/10.1105/tpc.19.00023
doi: 10.1105/tpc.19.00023
pubmed: 30914468
pmcid: 6533028
Fan C et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171. https://doi.org/10.1007/s00122-006-0218-1
doi: 10.1007/s00122-006-0218-1
pubmed: 16453132
Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484. https://doi.org/10.1016/0092-8674(91)90229-r
doi: 10.1016/0092-8674(91)90229-r
pubmed: 1991318
Gao XY et al (2019) Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling. Plant Cell 31:1077–1093. https://doi.org/10.1105/tpc.18.00836
doi: 10.1105/tpc.18.00836
pubmed: 30923230
pmcid: 6533024
Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002) Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30:385–394. https://doi.org/10.1046/j.1365-313x.2002.01298.x
doi: 10.1046/j.1365-313x.2002.01298.x
pubmed: 12028569
He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638. https://doi.org/10.1126/science.1107580
doi: 10.1126/science.1107580
pubmed: 15681342
pmcid: 2925132
Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. https://doi.org/10.1046/j.1365-313x.1994.6020271.x
doi: 10.1046/j.1365-313x.1994.6020271.x
pubmed: 7920717
pmcid: 7920717
Hu Z et al (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol 54:979–990. https://doi.org/10.1111/jipb.12008
doi: 10.1111/jipb.12008
pubmed: 23137285
Hu ZJ et al (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11:736–749. https://doi.org/10.1016/j.molp.2018.03.005
doi: 10.1016/j.molp.2018.03.005
pubmed: 29567449
Ishimaru K et al (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711. https://doi.org/10.1038/ng.2612
doi: 10.1038/ng.2612
pubmed: 23583977
Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977. https://doi.org/10.1104/pp.113.217703
doi: 10.1104/pp.113.217703
pubmed: 23771896
pmcid: 3729775
Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A 102:3117–3122. https://doi.org/10.1073/pnas.0409893102
doi: 10.1073/pnas.0409893102
pubmed: 15708974
pmcid: 549499
Kawasaki T, Nam J, Boyes DC, Holt BF 3rd, Hubert DA, Wiig A, Dangl JL (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44:258–270. https://doi.org/10.1111/j.1365-313X.2005.02525.x
doi: 10.1111/j.1365-313X.2005.02525.x
pubmed: 16212605
Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355. https://doi.org/10.1111/j.1365-313X.2006.02782.x
doi: 10.1111/j.1365-313X.2006.02782.x
pubmed: 16792696
Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51:92–104. https://doi.org/10.1111/j.1365-313X.2007.03120.x
doi: 10.1111/j.1365-313X.2007.03120.x
pubmed: 17559513
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044
doi: 10.1093/mp/ssu044
pubmed: 24719468
Li QF, Lu J, Yu JW, Zhang CQ, He JX, Liu QQ (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Bba-Gene Regul Mech 1861:561–571. https://doi.org/10.1016/j.bbagrm.2018.04.003
doi: 10.1016/j.bbagrm.2018.04.003
Li Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269. https://doi.org/10.1038/ng.977
doi: 10.1038/ng.977
pubmed: 22019783
Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336. https://doi.org/10.1101/gad.463608
doi: 10.1101/gad.463608
pubmed: 18483219
pmcid: 2377187
Liu JF et al (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043. https://doi.org/10.1038/nplants.2017.43
doi: 10.1038/nplants.2017.43
pubmed: 28394310
Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016. https://doi.org/10.1007/s00425-007-0548-5
doi: 10.1007/s00425-007-0548-5
pubmed: 17549515
Mao H et al (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107:19579–19584. https://doi.org/10.1073/pnas.1014419107
doi: 10.1073/pnas.1014419107
pubmed: 20974950
pmcid: 2984220
McNellis TW, Torii KU, Deng XW (1996) Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. Plant Cell 8:1491–1503. https://doi.org/10.1105/tpc.8.9.1491
doi: 10.1105/tpc.8.9.1491
pubmed: 8837504
pmcid: 161293
McNellis TW, von Arnim AG, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6:1391–1400. https://doi.org/10.1105/tpc.6.10.1391
doi: 10.1105/tpc.6.10.1391
pubmed: 7994173
pmcid: 160528
Meng XB, Zhao WS, Lin RM, Wang M, Peng YL (2006) Molecular cloning and characterization of a rice blast-inducible RING-H2 type Zinc finger gene. DNA Seq 17:41–48. https://doi.org/10.1080/10425170500476509
doi: 10.1080/10425170500476509
pubmed: 16753816
Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102:3123–3128. https://doi.org/10.1073/pnas.0409858102
doi: 10.1073/pnas.0409858102
pubmed: 15708976
pmcid: 549491
Qi P et al (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22:1666–1680. https://doi.org/10.1038/cr.2012.151
doi: 10.1038/cr.2012.151
pubmed: 23147796
pmcid: 3515756
Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261. https://doi.org/10.1242/dev.02194
doi: 10.1242/dev.02194
pubmed: 16339187
Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C (2003) AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A 100:9626–9631. https://doi.org/10.1073/pnas.1633697100
doi: 10.1073/pnas.1633697100
pubmed: 12883010
pmcid: 170968
Si L et al (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456. https://doi.org/10.1038/ng.3518
doi: 10.1038/ng.3518
pubmed: 26950093
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630. https://doi.org/10.1038/ng2014
doi: 10.1038/ng2014
pubmed: 17417637
Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30. https://doi.org/10.1104/pp.104.052423
doi: 10.1104/pp.104.052423
pubmed: 15644464
pmcid: 548835
Takeda T et al (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520. https://doi.org/10.1046/j.1365-313x.2003.01648.x
doi: 10.1046/j.1365-313x.2003.01648.x
pubmed: 12581309
Tong HN et al (2012) Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–2577. https://doi.org/10.1105/tpc.112.097394
doi: 10.1105/tpc.112.097394
pubmed: 3406904
pmcid: 3406904
Tsuge T et al (2001) Phytochrome-mediated control of COP1 gene expression in rice plants. Mol Genet Genomics 265:43–50. https://doi.org/10.1007/s004380000396
doi: 10.1007/s004380000396
pubmed: 11370871
Waghmare S, Lileikyte E, Karnik R, Goodman JK, Blatt MR, Jones AME (2018) SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol 178:1679–1688. https://doi.org/10.1104/pp.18.00832
doi: 10.1104/pp.18.00832
pubmed: 30348815
pmcid: 6288737
Wang S et al (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954. https://doi.org/10.1038/ng.2327
doi: 10.1038/ng.2327
pubmed: 22729225
Weng J et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209. https://doi.org/10.1038/cr.2008.307
doi: 10.1038/cr.2008.307
pubmed: 19015668
Xia T et al (2013) The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–3359. https://doi.org/10.1105/tpc.113.115063
doi: 10.1105/tpc.113.115063
pubmed: 24045020
pmcid: 3809536
Zhang C et al (2012a) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8:651–664. https://doi.org/10.1371/journal.pgen.1002686
doi: 10.1371/journal.pgen.1002686
Zhang X et al (2012b) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109:21534–21539. https://doi.org/10.1073/pnas.1219776110
doi: 10.1073/pnas.1219776110
pubmed: 23236132
pmcid: 3535600
Zhang Y et al (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929. https://doi.org/10.1105/tpc.106.048488
doi: 10.1105/tpc.106.048488
pubmed: 17573536
pmcid: 1955734
Zhu XL et al (2015) Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J 82:570–581. https://doi.org/10.1111/tpj.12820
doi: 10.1111/tpj.12820
pubmed: 25754973