Tropical and temperate wastewater treatment plants assemble different and diverse microbiomes.
Activated sludge microbiome
Assembly
Microbial community
Municipal wastewater treatment plant (WWTP)
Tropical and temperate regions
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
18
08
2020
accepted:
27
12
2020
revised:
22
11
2020
pubmed:
8
1
2021
medline:
15
5
2021
entrez:
7
1
2021
Statut:
ppublish
Résumé
The diversity and assembly of activated sludge microbiomes play a key role in the performances of municipal wastewater treatment plants (WWTPs), which are the most widely applied biotechnological process systems. In this study, we investigated the microbiomes of municipal WWTPs in Bangkok, Wuhan, and Beijing that respectively represent tropical, subtropical, and temperate climate regions, and also explored how microbiomes assembled in these municipal WWTPs. Our results showed that the microbiomes from these municipal WWTPs were significantly different. The assembly of microbiomes in municipal WWTPs followed deterministic and stochastic processes governed by geographical location, temperature, and nutrients. We found that both taxonomic and phylogenetic α-diversities of tropical Bangkok municipal WWTPs were the highest and were rich in yet-to-be-identified microbial taxa. Nitrospirae and β-Proteobacteria were more abundant in tropical municipal WWTPs, but did not result in better removal efficiencies of ammonium and total nitrogen. Overall, these results suggest that tropical and temperate municipal WWTPs harbored diverse and unique microbial resources, and the municipal WWTP microbiomes were assembled with different processes. Implications of these findings for designing and running tropical municipal WWTPs were discussed. KEY POINTS: • Six WWTPs of tropical Thailand and subtropical and temperate China were investigated. • Tropical Bangkok WWTPs had more diverse and yet-to-be-identified microbial taxa. • Microbiome assembly processes were associated with geographical location.
Identifiants
pubmed: 33409607
doi: 10.1007/s00253-020-11082-0
pii: 10.1007/s00253-020-11082-0
doi:
Substances chimiques
Sewage
0
Waste Water
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
853-867Subventions
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : KY201701011
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2019YFA0905500
Organisme : Ministry of Science and Technology of China
ID : 2019YFC1905001
Organisme : Chinese Academy of Sciences
ID : 153211KYSB20160029
Organisme : Ministry of Science and Technology of Thailand
ID : P-18-52413
Références
Alawi M, Off S, Kaya M, Spieck E (2009) Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep 1(3):184–190. https://doi.org/10.1111/j.1758-2229.2009.00029.x
doi: 10.1111/j.1758-2229.2009.00029.x
pubmed: 23765792
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
doi: 10.1016/S0022-2836(05)80360-2
pubmed: 2231712
pmcid: 2231712
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
pubmed: 31341288
pmcid: 7015180
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789. https://doi.org/10.1890/03-9000
doi: 10.1890/03-9000
Burger W, Krysiak-Baltyn K, Scales PJ, Martin GJ, Stickland AD, Gras SL (2017) The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process. Water Res 123:578–585. https://doi.org/10.1016/j.watres.2017.06.063
doi: 10.1016/j.watres.2017.06.063
pubmed: 28704773
Cai L, Ju F, Zhang T (2013) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98:3317–3326. https://doi.org/10.1007/s00253-013-5402-z
doi: 10.1007/s00253-013-5402-z
pubmed: 24305737
Cai X, Mao Y, Xu J, Tian L, Wang Y, Iqbal W, Yang B, Liu C, Zhao X, Wang Y (2020) Characterizing community dynamics and exploring bacterial assemblages in two activated sludge systems. Appl Microbiol Biotechnol 104:1795–1808. https://doi.org/10.1007/s00253-019-10279-2
doi: 10.1007/s00253-019-10279-2
pubmed: 31900552
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X (2017) A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere 174:173–182. https://doi.org/10.1016/j.chemosphere.2017.01.129
doi: 10.1016/j.chemosphere.2017.01.129
pubmed: 28161518
Chen H, Wang M, Chang S (2020) Disentangling community structure of ecological system in activated sludge: core communities, functionality, and functional redundancy. Microb Ecol 2020:1–13. https://doi.org/10.1007/s00248-020-01492-y
doi: 10.1007/s00248-020-01492-y
Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489. https://doi.org/10.1016/j.tibtech.2006.09.002
doi: 10.1016/j.tibtech.2006.09.002
pubmed: 16971007
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
doi: 10.1093/bioinformatics/btq461
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604
doi: 10.1038/nmeth.2604
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381
doi: 10.1093/bioinformatics/btr381
pubmed: 3150044
pmcid: 3150044
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103
doi: 10.1073/pnas.0507535103
pubmed: 16407148
pmcid: 1334650
Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci U S A 105:7774–7778. https://doi.org/10.1073/pnas.0803070105
doi: 10.1073/pnas.0803070105
pubmed: 18509059
pmcid: 2409396
Gao P, Xu W, Sontag P, Li X, Xue G, Liu T, Sun W (2016) Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Appl Microbiol Biotechnol 100:4663–4673. https://doi.org/10.1007/s00253-016-7307-0
doi: 10.1007/s00253-016-7307-0
pubmed: 26795962
Griffin JS, Wells GF (2017) Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. ISME J 11:500–511. https://doi.org/10.1038/ismej.2016.121
doi: 10.1038/ismej.2016.121
pubmed: 27996980
Guo F, Zhang T (2012) Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing. Water Res 46:2772–2782. https://doi.org/10.1016/j.watres.2012.02.039
doi: 10.1016/j.watres.2012.02.039
pubmed: 22406202
Hollander M, Wolfe DA, Chicken E (2015) Nonparametric Statistical Methods, Third Edition. John Wiley & Sons, Inc., Hoboken. https://doi.org/10.1002/9781119196037
Hu M, Wang X, Wen X, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79. https://doi.org/10.1016/j.biortech.2012.04.061
doi: 10.1016/j.biortech.2012.04.061
pubmed: 22609716
Huang Z, Gedalanga PB, Asvapathanagul P, Olson BH (2010) Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res 44:4351–4358. https://doi.org/10.1016/j.watres.2010.05.037
doi: 10.1016/j.watres.2010.05.037
pubmed: 20591463
Ibarbalz FM, Orellana E, Figuerola EL, Erijman L (2016) Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Appl Environ Microbiol 82:5186–5196. https://doi.org/10.1128/AEM.00916-16
doi: 10.1128/AEM.00916-16
pubmed: 27316957
pmcid: 4988215
Jenkins D, Wanner J (2014) Activated sludge – 100 years and counting. Volume 13. IWA Publishing. https://doi.org/10.2166/9781780404943
Jiang XT, Ye L, Ju F, Wang YL, Zhang T (2018) Toward an intensive longitudinal understanding of activated sludge bacterial assembly and dynamics. Environ Sci Technol 52:8224–8232. https://doi.org/10.1021/acs.est.7b05579
doi: 10.1021/acs.est.7b05579
pubmed: 29943968
Johnston J, Behrens S (2020) Seasonal dynamics of the activated sludge microbiome in sequencing batch reactors using 16S rRNA transcript amplicon sequencing. Appl Environ Microbiol 86. https://doi.org/10.1128/AEM.00597-20
Ju F, Zhang T (2015) Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J 9:683–695. https://doi.org/10.1038/ismej.2014.162
doi: 10.1038/ismej.2014.162
pubmed: 25180966
Ju F, Guo F, Ye L, Xia Y, Zhang T (2014) Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ Microbiol Rep 6:80–89. https://doi.org/10.1111/1758-2229.12110
doi: 10.1111/1758-2229.12110
pubmed: 24596265
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130
doi: 10.1127/0941-2948/2006/0130
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13
doi: 10.1128/AEM.01043-13
pubmed: 23793624
pmcid: 3753973
Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier PL (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol 5:251. https://doi.org/10.3389/fmicb.2014.00251
doi: 10.3389/fmicb.2014.00251
pubmed: 24904563
pmcid: 4033906
Liu F, Hu X, Zhao X, Guo H, Zhao Y (2019) Microbial community structures’ response to seasonal variation in a full-scale municipal wastewater treatment plant. Environ Eng Sci 36:172–179. https://doi.org/10.1089/ees.2018.0280
doi: 10.1089/ees.2018.0280
Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MC (2008) Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Res 42:2349–2360. https://doi.org/10.1016/j.watres.2008.01.001
doi: 10.1016/j.watres.2008.01.001
pubmed: 18272198
Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
pubmed: 21903629
pmcid: 3198573
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200
doi: 10.14806/ej.17.1.200
Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. https://doi.org/10.1073/pnas.1016308108
doi: 10.1073/pnas.1016308108
pubmed: 21518859
pmcid: 3093525
McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x
doi: 10.1111/j.1461-0248.2007.01094.x
pubmed: 17845298
McIlroy SJ, Kirkegaard RH, McIlroy B, Nierychlo M, Kristensen JM, Karst SM, Albertsen M, Nielsen PH (2017) MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database 2017. https://doi.org/10.1093/database/bax016
Newton RJ, McLellan SL, Dila DK, Vineis JH, Morrison HG, Eren AM, Sogin ML (2015) Sewage reflects the microbiomes of human populations. mBio 6:e02574–e02514. https://doi.org/10.1128/mBio.02574-14
doi: 10.1128/mBio.02574-14
pubmed: 25714718
pmcid: 4358014
Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater-a model system in environmental biotechnology. Curr Opin Biotechnol 23:452–459. https://doi.org/10.1016/j.copbio.2011.11.027
doi: 10.1016/j.copbio.2011.11.027
pubmed: 22197171
Nierychlo M, Andersen KS, Xu Y, Green N, Albertsen M, Dueholm MS, Nielsen PH (2019) Species-level microbiome composition of activated sludge-introducing the MiDAS 3 ecosystem-specific reference database and taxonomy. bioRxiv:842393. https://doi.org/10.1101/842393
Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, Sloan WT (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci U S A 107:15345–15350. https://doi.org/10.1073/pnas.1000604107
doi: 10.1073/pnas.1000604107
pubmed: 20705897
pmcid: 2932620
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494
doi: 10.1093/bioinformatics/btu494
pubmed: 25061070
pmcid: 4609014
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Pinel-Alloul B, André A, Legendre P, Cardille JA, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Glob Ecol Biogeogr 22:784–795. https://doi.org/10.1111/geb.12041
doi: 10.1111/geb.12041
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219
Saunders AM, Albertsen M, Vollertsen J, Nielsen PH (2016) The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10:11–20. https://doi.org/10.1038/ismej.2015.117
doi: 10.1038/ismej.2015.117
pubmed: 26262816
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60
doi: 10.1186/gb-2011-12-6-r60
pubmed: 21702898
pmcid: 3218848
Segura A, Calliari D, Kruk C, Fort H, Izaguirre I, Saad JF, Arim M (2015) Metabolic dependence of phytoplankton species richness. Glob Ecol Biogeogr 24:472–482. https://doi.org/10.1111/geb.12258
doi: 10.1111/geb.12258
Soddell JA, Seviour RJ (1995) Relationship between temperature and growth of organisms causing Nocardia foams in activated sludge plants. Water Res 29:1555–1558. https://doi.org/10.1016/0043-1354(94)00222-S
doi: 10.1016/0043-1354(94)00222-S
Song Y, Jiang CY, Liang ZL, Wang BJ, Jiang Y, Yin Y, Zhu HZ, Qin YL, Cheng RX, Liu ZP, Liu Y, Jin T, Corvini PF, Rabaey K, Wang AJ, Liu SJ (2020) Casimicrobium huifangae gen. nov., sp. nov., a ubiquitous “most-wanted” core bacterial taxon from municipal wastewater treatment plants. Appl Environ Microbiol 86(4). https://doi.org/10.1128/AEM.02209-19
Speirs LBM, Rice DTF, Petrovski S, Seviour RJ (2019) The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front Microbiol 10:2015. https://doi.org/10.3389/fmicb.2019.02015
doi: 10.3389/fmicb.2019.02015
pubmed: 31572309
pmcid: 6753630
Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93
doi: 10.1038/ismej.2013.93
pubmed: 3806266
pmcid: 3806266
Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 6:370. https://doi.org/10.3389/fmicb.2015.00370
doi: 10.3389/fmicb.2015.00370
pubmed: 4416444
pmcid: 4416444
Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, Kessler M (2012) Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett 15:1397–1405. https://doi.org/10.1111/j.1461-0248.2012.01863.x
doi: 10.1111/j.1461-0248.2012.01863.x
pubmed: 22943183
Tilman D (1982) Resource Competition and Community Structure. (MPB-17), Volume 17. Princeton University Press. https://doi.org/10.1515/9780691209654
Tribelli PM, Lopez NI (2018) Reporting key features in cold-adapted bacteria. Life (Basel) 8:8. https://doi.org/10.3390/life8010008
doi: 10.3390/life8010008
Valentín-Vargas A, Toro-Labrador G, Massol-Deya AA (2012) Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance. PLoS One 7:e42524. https://doi.org/10.1371/journal.pone.0042524
doi: 10.1371/journal.pone.0042524
pubmed: 22880016
pmcid: 3411768
Vuono DC, Benecke J, Henkel J, Navidi WC, Cath TY, Munakatamarr J, Spear JR, Drewes JE (2015) Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J 9:425–435. https://doi.org/10.1038/ismej.2014.139
doi: 10.1038/ismej.2014.139
pubmed: 25126758
Vuono DC, Munakata-Marr J, Spear JR, Drewes JE (2016) Disturbance opens recruitment sites for bacterial colonization in activated sludge. Environ Microbiol 18:87–99. https://doi.org/10.1111/1462-2920.12824
doi: 10.1111/1462-2920.12824
pubmed: 25727891
Wang P, Yu Z, Qi R, Zhang H (2016) Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. Water Res 105:157–166. https://doi.org/10.1016/j.watres.2016.08.050
doi: 10.1016/j.watres.2016.08.050
pubmed: 27614036
Wang YH, Huang Z, Liu SJ (2019) Chemotaxis towards aromatic compounds: insights from Comamonas testosteroni. Int J Mol Sci 20:2701. https://doi.org/10.3390/ijms20112701
doi: 10.3390/ijms20112701
pmcid: 6600141
Wei Z, Liu Y, Feng K, Li S, Wang S, Jin D, Zhang Y, Chen H, Yin H, Xu M, Deng Y (2018) The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci Total Environ 628-629:969–978. https://doi.org/10.1016/j.scitotenv.2018.02.003
doi: 10.1016/j.scitotenv.2018.02.003
pubmed: 30045585
Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, Zhang Q, Brown M, Li Z, Van Nostrand JD, Ling F, Xiao N, Zhang Y, Vierheilig J, Wells GF, Yang Y, Deng Y, Tu Q, Wang A, Zhang T, He Z, Keller J, Nielsen PH, Alvarez PJJ, Criddle CS, Wagner M, Tiedje JM, He Q, Curtis TP, Stahl DA, Alvarez-Cohen L, Rittmann BE, Wen X, Zhou J (2019) Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol 4:1183–1195. https://doi.org/10.1038/s41564-019-0426-5
doi: 10.1038/s41564-019-0426-5
pubmed: 31086312
Xia Y, Kong Y, Thomsen TR, Halkjaer Nielsen P (2008) Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl Environ Microbiol 74:2229–2238. https://doi.org/10.1128/AEM.02502-07
Xia Y, Wen X, Zhang B, Yang Y (2018) Diversity and assembly patterns of activated sludge microbial communities: a review. Biotechnol Adv 36:1038–1047. https://doi.org/10.1016/j.biotechadv.2018.03.005
doi: 10.1016/j.biotechadv.2018.03.005
pubmed: 29551616
Zhang X, Qu Y, Ma Q, Zhang Z, Li D, Wang J, Shen W, Shen E, Zhou J (2015) Illumina MiSeq sequencing reveals diverse microbial communities of activated sludge systems stimulated by different aromatics for indigo biosynthesis from indole. PLoS One 10:e0125732. https://doi.org/10.1371/journal.pone.0125732
doi: 10.1371/journal.pone.0125732
pubmed: 25928424
pmcid: 4416020
Zhang Z, Deng Y, Feng K, Cai W, Li S, Yin H, Xu M, Ning D, Qu Y (2019) Deterministic assembly and diversity gradient altered the biofilm community performances of bioreactors. Environ Sci Technol 53:1315–1324. https://doi.org/10.1021/acs.est.8b06044
doi: 10.1021/acs.est.8b06044
pubmed: 30615833
Zhang B, Ning D, Van Nostrand JD, Sun C, Yang Y, Zhou J, Wen X (2020a) Biogeography and assembly of microbial communities in wastewater treatment plants in China. Environ Sci Technol 54:5884–5892. https://doi.org/10.1021/acs.est.9b07950
doi: 10.1021/acs.est.9b07950
pubmed: 32259441
Zhang B, Ning D, Yang Y, Van Nostrand JD, Zhou J, Wen X (2020b) Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Water Res 169:115276. https://doi.org/10.1016/j.watres.2019.115276
doi: 10.1016/j.watres.2019.115276
pubmed: 31731242
Zhang K, Delgado-Baquerizo M, Zhu YG, Chu H (2020c) Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems 5. https://doi.org/10.1128/mSystems.00783-19
Zhao Y, Park HD, Park JH, Zhang F, Chen C, Li X, Zhao D, Zhao F (2016) Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. Bioresour Technol 216:808–816. https://doi.org/10.1016/j.biortech.2016.06.032
doi: 10.1016/j.biortech.2016.06.032
pubmed: 27318158
Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang Y, Brown JH (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun 7:12083. https://doi.org/10.1038/ncomms12083
doi: 10.1038/ncomms12083
pubmed: 4935970
pmcid: 4935970