Unexplored dimensions of variability in vegetative desiccation tolerance.
drought
genetic diversity
natural variation
plasticity
resiliency
resurrection plants
Journal
American journal of botany
ISSN: 1537-2197
Titre abrégé: Am J Bot
Pays: United States
ID NLM: 0370467
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
14
05
2020
accepted:
03
08
2020
pubmed:
10
1
2021
medline:
20
3
2021
entrez:
9
1
2021
Statut:
ppublish
Résumé
Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
346-358Informations de copyright
© 2021 Botanical Society of America.
Références
Alpert, P. 1979. Desiccation of desert mosses following a summer rainstorm. Bryologist 82: 65-71.
Alpert, P. 2000. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology 151: 5-17.
Alpert, P. 2006. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? Journal of Experimental Biology 209: 1575-1584.
Alpert, P., and W. C. Oechel. 1987. Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions. American Journal of Botany 74: 1787-1796.
Alpert, P., and M. J. Oliver. 2002. Drying without dying. In M. Black and H. W. Pritchard [eds.], Desiccation and survival in plants: drying without dying, 3-43. CABI Publishing Wallingford, UK.
Anderson, D. B. 1936. Relative humidity or vapor pressure deficit. Ecology 17: 277-282.
Barrs, H. D., and P. E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15: 413-428.
Beckett, R. P. 1999. Partial dehydration and ABA induce tolerance to desiccation-induced ion leakage in the moss Atrichum androgynum. South African Journal of Botany 65: 212-217.
Beckett, R. P., and N. Hoddinott. 1997. Seasonal variations in tolerance to ion leakage following desiccation in the moss Atrichum androgynum from a KwaZulu-Natal afromontane forest. South African Journal of Botany 63: 276-279.
Beckett, R. P., M. Marschall, and Z. Laufer. 2005a. Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast- rather than slow-relaxing quenching. Journal of Bryology 27: 7-12.
Beckett, R. P., N. Mayaba, F. V. Minibayeva, and A. J. Alyabyev. 2005b. Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon. Annals of Botany 96: 109-115.
Benkő, Z. 2002. Desiccation survival times in different desiccation-tolerant plants. Acta Biologica Szegediensis 46: 231-233.
Bentley, J., J. P. Moore, and J. M. Farrant. 2019. Metabolomic profiling of the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia indicates phenolic variability across its natural habitat: implications for tea and cosmetics production. Molecules 24: 1240.
Bewley, J. D. 1979. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology 30: 195-238.
Bianchi, G., A. Gamba, R. Limiroli, N. Pozzi, R. Elster, F. Salamini, and D. Bartels. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiologia Plantarum 87: 223-226.
Blomstedt, C. K., C. A. Griffiths, D. F. Gaff, J. D. Hamill, and A. D. Neale. 2018. Plant desiccation tolerance and its regulation in the foliage of resurrection ‘flowering-plant’ species. Agronomy 8: 146.
Brinda, J. C., L. R. Stark, T. A. Clark, and J. L. Greenwood. 2016. Embryos of a moss can be hardened to desiccation tolerance: Effects of rate of drying on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae). Annals of Botany 117: 153-163.
Cavender-Bares, J., and J. A. Ramírez-Valiente. 2017. Physiological evidence from common garden experiments for local adaptation and adaptive plasticity to climate in American live oaks (Quercus section Virentes): implications for conservation under global change. In E. Gil-Pelegrín, J. Peguero-Pina and D. Sancho-Knapik [eds.], Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Tree Physiology, Springer, Cham.
Clausen, E. 1964. The tolerance of hepatics to desiccation and temperature. Bryologist 67: 411-417.
Costa, M.-C. D., M. A. S. Artur, J. Maia, E. Jonkheer, M. F. L. Derks, H. Nijveen, B. Williams, et al. 2017. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nature Plants 3: 17038.
Cruz de Carvalho, R. C., C. Branquinho, and J. M. da Silva. 2011. Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234: 195-205.
Cruz de Carvalho, R., A. Maurício, M. F. Pereira, J. Marques da Silva, and C. Branquinho. 2019. All for one: the role of colony morphology in bryophyte desiccation tolerance. Frontiers in Plant Science 10: 1360.
Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52-58.
Dilks, T. J. K., and M. C. F. Proctor. 1976. Seasonal variation in desiccation tolerance in some British bryophytes. Journal of Bryology 9: 239-247.
Dilks, T. J. K., and M. C. F. Proctor. 1974. The pattern of recovery of bryophytes after desiccation. Journal of Bryology 8: 97-115.
Dinakar, C., and D. Bartels. 2013. Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Frontiers in Plant Science 4: 482.
Dinakar, C., D. Djilianov, and D. Bartels. 2012. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Science 182: 29-41.
Egert, A., B. Eicher, F. Keller, and S. Peters. 2015. Evidence for water deficit-induced mass increases of raffinose family oligosaccharides (RFOs) in the leaves of three Craterostigma resurrection plant species. Frontiers in Physiology 6: 206.
Farrant, J. M., K. Cooper, L. A. Kruger, and H. W. Sherwin. 1999. The effect of drying rate on the survival of three desiccation-tolerant angiosperm species. Annals of Botany 84: 371-379.
Farrant, J. M., W. Brandt, and G. G. Lindsey. 2007. An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1: 72-84.
Farrant, J. M., and L. A. Kruger. 2001. Longevity of dry Myrothamnus flabellifolius in simulated field conditions. Plant Growth Regulation 35: 109-120.
Farrant, J. M., A. Lehner, K. Cooper, and S. Wiswedel. 2009. Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant Journal 57: 65-79.
Gaff, D. F. 1977. Desiccation tolerant vascular plants of southern Africa. Oecologia 31: 95-109.
Gaff, D. F. 1981. The biology of resurrection plants. In J. S. Pate and A. J. McComb [eds.], The biology of Australian plants, 114-146. University of Western Australia Press, Perth, Australia.
Gaff, D. F. 1989. Responses of desiccation tolerant ‘resurrection’ plants to water stress. In K. H. Kreeb, H. Richter and T. M. Hincley [eds.], Structural and functional responses to environmental stresses, 255-268. SPB Academic Publishing, The Hague, Netherlands.
Gaff, D. F., and P. V. Bole. 1986. Resurrection grasses in India. Oecologia 71: 159-160.
Gaff, D. F., and M. Oliver. 2013. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Functional Plant Biology 40: 315-328.
Gechev, T. S., C. Dinakar, M. Benina, V. Toneva, and D. Bartels. 2012. Molecular mechanisms of desiccation tolerance in resurrection plants. Cellular and Molecular Life Sciences 69: 3175-3186.
Greenwood, J. L., and L. R. Stark. 2014. The rate of drying determines the extent of desiccation tolerance in Physcomitrella patens. Functional Plant Biology 41: 460.
Greenwood, J. L., L. R. Stark, and L. P. Chiquoine. 2019. Effects of rate of drying, life history phase, and ecotype on the ability of the moss Bryum argenteum to survive desiccation events and the influence on conservation and selection of material for restoration. Frontiers in Ecology and Evolution 7: 388.
Guo, Y., and Y. Zhao. 2018. Effects of storage temperature on the physiological characteristics and vegetative propagation of desiccation-tolerant mosses. Biogeosciences 15: 797-808.
Harten, J. B., and W. G. Eickmeier. 1987. Comparative desiccation tolerance of three desert pteridophytes: response to long-term desiccation. American Midland Naturalist 118: 337-347.
Hearnshaw, G. F., and M. C. F. Proctor. 1982. The effect of temperature on the survival of dry bryophytes. New Phytologist 90: 221-228.
Hellwege, E. M., K. J. Dietz, O. H. Volk, and W. Hartung. 1994. Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194: 525-531.
Hosokawa, T., and H. Kubota. 1957. On the osmotic pressure and resistance to desiccation of epiphytic mosses from a beech forest, south-west Japan. Journal of Ecology 45: 579.
Illing, N., K. J. Denby, H. Collett, A. Shen, and J. M. Farrant. 2005. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integrative and Comparative Biology 45: 771-787.
Khandelwal, A., S. H. Cho, H. Marella, Y. Sakata, P.-F. Perroud, A. Pan, and R. S. Quatrano. 2010. Role of ABA and ABI3 in desiccation tolerance. Science 327: 546.
Knight, C. A., H. Vogel, J. Kroymann, A. Shumate, H. Witsenboer, and T. Mitchell-Olds. 2006. Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Molecular Ecology 15: 1229-1237.
Kovach, M. J., and S. R. McCouch. 2008. Leveraging natural diversity: back through the bottleneck. Current Opinion in Plant Biology 11: 193-200.
Leon-Vargas, Y., S. Engwald, and M. C. F. Proctor. 2006. Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. Journal of Biogeography 33: 901-913.
Lesk, C., P. Rowhani, and N. Ramankutty. 2016. Influence of extreme weather disasters on global crop production. Nature 529: 84-87.
Letunic, I., and P. Bork. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research 47: 256-259.
Liu, X., D. Challabathula, W. Quan, and D. Bartels. 2019. Transcriptional and metabolic changes in the desiccation tolerant plant Craterostigma plantagineum during recurrent exposures to dehydration. Planta 249: 1017-1035.
López-Pozo, M., D. Ballesteros, J. M. Laza, J. I. García-Plazaola, and B. Fernández-Marín. 2019. Desiccation tolerance in chlorophyllous fern spores: Are ecophysiological features related to environmental conditions? Frontiers in Plant Science 10: 1130.
Lyall, R., and T. Gechev. 2018. Multi-omics insights into the evolution of angiosperm resurrection plants. Annual Plant Reviews Online 3: 77-110.
Lyall, R., R. A. Ingle, and N. Illing. 2014. The window of desiccation tolerance shown by early-stage germinating seedlings remains open in the resurrection plant, Xerophyta viscosa. PLoS One 9: e93093.
Marks, R. A., J. F. Burton, and D. N. McLetchie. 2016. Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. Annals of Botany 118: 347-356.
Marks, R. A., B. D. Pike, and D. Nicholas McLetchie. 2019. Water stress tolerance tracks environmental exposure and exhibits a fluctuating sexual dimorphism in a tropical liverwort. Oecologia 191: 791-802.
Marks, R. A., J. J. Smith, R. VanBuren, and D. N. McLetchie. 2020. Expression dynamics of dehydration tolerance in the tropical plant Marchantia inflexa. The Plant Journal. https://doi.org/10.1111/tpj.15052
McLetchie, D. N., and L. R. Stark. 2019. Rate of drying influences tolerance of low water contents in the moss Funaria hygrometrica (Funariaceae). Bryologist 122: 271-280.
Moore, J. P., and J. M. Farrant. 2012. A systems-based molecular biology analysis of resurrection plants for crop and forage improvement in arid environments. In N. Tuteja, S. S. Gill, A. F. Tiburcio, R. Tuteja [eds.], Improving crop resistance to abiotic stress, 399-418. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
Moore, J. P., N. T. Le, W. F. Brandt, A. Driouich, and J. M. Farrant. 2009. Towards a systems-based understanding of plant desiccation tolerance. Trends in Plant Science 14: 110-117.
Morse, M., M. S. Rafudeen, and J. M. Farrant. 2011. An overview of the current understanding of desiccation tolerance in the vegetative tissues of higher plants. Advances in Botanical Research 57: 319-347.
Müller, J., N. Sprenger, K. Bortlik, T. Boller, and A. Wiemken. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiologia Plantarum 100: 153-158.
Neeragunda Shivaraj, Y., P. Barbara, B. Gugi, M. Vicré-Gibouin, A. Driouich, S. Ramasandra Govind, A. Devaraja, and Y. Kambalagere. 2018. Perspectives on structural, physiological, cellular, and molecular responses to desiccation in resurrection plants. Scientifica 2018: 9464592.
Newton, M. E. 1972. Sex-ratio differences in Mnium hornum Hedw. and M. undulatum Sw. in relation to spore germination and vegetative regeneration. Annals of Botany 36: 163-178.
Oliver, M. J., J. M. Farrant, H. W. M. Hilhorst, S. Mundree, B. Williams, and J. D. Bewley. 2020. Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annual Review of Plant Biology 71: 435-460.
Oliver, M. J., L. Guo, D. C. Alexander, J. A. Ryals, B. W. M. Wone, and J. C. Cushman. 2011. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23: 1231-1248.
Oliver, M. J., B. D. Mishler, and J. E. Quisenberry. 1993. Comparative measures of desiccation-tolerance in the Tortula ruralis complex. I. Variation in damage control and repair. American Journal of Botany 80: 127-136.
Oliver, M. J., Z. Tuba, and B. D. Mishler. 2000. The evolution of vegetative desiccation tolerance in land plants. Plant Ecology 151: 85-100.
Oliver, M. J., J. Velten, and B. D. Mishler. 2005. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology 45: 788-799.
Oliver, M. J., A. J. Wood, and P. O’Mahony. 1998. “To dryness and beyond” - Preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regulation 24: 193-201.
Pardow, A., C. Gehrig-Downie, R. Gradstein, and M. Lakatos. 2012. Functional diversity of epiphytes in two tropical lowland rainforests, French Guiana: using bryophyte life-forms to detect areas of high biodiversity. Biodiversity and Conservation 21: 3637-3655.
Phillips, J. R., E. Fischer, M. Baron, N. Van Den Dries, F. Facchinelli, M. Kutzer, R. Rahmanzadeh, et al. 2008. Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant Journal 54: 938-948.
PhyloT. 2019. PhyloT: a phylogenetic tree generator, version 2. Website: phylot.biobyte.de.
Porembski, S. 2006. Vegetative architecture of desiccation-tolerant arborescent monocotyledons. Aliso 22: 129-134.
Porembski, S. 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Brazilian Journal of Botany 30: 579-586.
Porembski, S. 2011. Evolution, diversity, and habitats of poikilohydrous vascular plants. In U. Lüttge, E. Beck, and D. Bartels [eds.], Plant desiccation tolerance, ecological studies, 139-156. Springer, Berlin, Germany.
Porembski, S., and W. Barthlott. 2000. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology 151: 19-28.
Pressel, S., J. G. Duckett, R. Ligrone, and M. C. F. Proctor. 2009. Effects of de- and rehydration in desiccation-tolerant liverworts: a cytological and physiological study. International Journal of Plant Sciences 170: 182-199.
Proctor, M. C. F. 2002. Ecophysiological measurements on two pendulous forest mosses from Uganda, Pilotrichella ampullacea and Floribundaria floribunda. Journal of Bryology 24: 223-232.
Proctor, M. C. F. 2003. Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as an index of recovery. Journal of Bryology 25: 201-210.
Proctor, M. C. F. 2010. Recovery rates of chlorophyll-fluorescence parameters in desiccation-tolerant plants: fitted logistic curves as a versatile and robust source of comparative data. Plant Growth Regulation 62: 233-240.
Proctor, M. C. F., R. Ligrone, and J. G. Duckett. 2007a. Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Annals of Botany 99: 75-93.
Proctor, M. C. F., M. J. Oliver, A. J. Wood, L. R. Stark, N. L. Cleavitt, and B. D. Mishler. 2007b. Desiccation-tolerance in bryophytes: a review. Bryologist 110: 595-621.
Proctor, M. C. F., and Z. Tuba. 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156: 327-349.
Rabarimanarivo, M. N., and B. Ramandimbisoa. 2019. The extraordinary botanical diversity of inselbergs in Madagascar. Candollea 74: 65-83.
Radermacher, A. L., S. F. du Toit, and J. M. Farrant. 2019. Desiccation-driven senescence in the resurrection plant Xerophyta schlechteri (Baker) N.L. Menezes: comparison of anatomical, ultrastructural and metabolic responses between senescent and non-senescent tissues. Frontiers in Plant Science 10: 1396.
Schlüter, U., and A. P. M. Weber. 2020. Regulation and evolution of C4 photosynthesis. Annual Review of Plant Biology 71: 183-215.
Schonbeck, M. W., and J. D. Bewley. 1981. Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance. Canadian Journal of Botany 59: 2707-2712.
Seel, W. E., G. A. F. Hendry, and J. A. Lee. 1992. The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats. Journal of Experimental Botany 43: 1023-1030.
Sherwin, H., and J. M. Farrant. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Annals of Botany 78: 703-710.
Silvera, K., K. M. Neubig, W. Mark Whitten, N. H. Williams, K. Winter, and J. C. Cushman. 2010. Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology 37: 995-1010.
Stark, L. R. 2017. Ecology of desiccation tolerance in bryophytes: a conceptual framework and methodology. Bryologist 120: 130-165.
Stark, L. R., J. C. Brinda, and J. L. Greenwood. 2016. Propagula and shoots of Syntrichia pagorum (Pottiaceae) exhibit different ecological strategies of desiccation tolerance. Bryologist 119: 181-192.
Stark, L. R., J. L. Greenwood, J. C. Brinda, and M. J. Oliver. 2014. Physiological history may mask the inherent inducible desiccation tolerance strategy of the desert moss Crossidium crassinerve. Plant Biology 16: 935-946.
Stark, L. R., J. L. Greenwood, J. C. Brinda, and M. J. Oliver. 2013. The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration. American Journal of Botany 100: 1522-1531.
Stark, L. R., L. Nichols, D. N. McLetchie, S. D. Smith, and C. Zundel. 2004. Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. American Journal of Botany 91: 1-9.
Stieha, C. R., A. R. Middleton, J. K. Stieha, S. H. Trott, and D. N. Mcletchie. 2014. The dispersal process of asexual propagules and the contribution to population persistence in Marchantia (Marchantiaceae). American Journal of Botany 101: 348-356.
Streusand, V. J., J. A. Weber, and H. Ikuma. 1986. Desiccation tolerance in mosses. II. Differences in the responses of Hedwigia ciliata and Mnium cuspidatum to desiccation and rehydration. Canadian Journal of Botany 64: 2393-2398.
Suguiyama, V. F., E. A. da Silva, and S. T. Meirelles. 2014. Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation. Frontiers in Plant Science 5: 96.
The Plant List. 2013. The plant list: a working list of all plant species, version 1.1. Website: http://www.theplantlist.org.
Trenberth, K. E. 2011. Changes in precipitation with climate change. Climate Research 47: 123-138.
Tuba, Z. 2008. Notes on the poikilochlorophyllous desiccation-tolerant plants. Acta Biologica Szegediensis 52: 111-113.
Tuba, Z., and H. K. Lichtenthaler. 2011. Ecophysiology of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants and vegetations. In U. Lüttge, E. Beck, and D. Bartels [eds.], Plant desiccation tolerance, ecological studies, 157-183. Springer, Berlin, Germany.
Tuba, Z., C. F. Protor, and Z. Csintalan. 1998. Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and an ecological perspective. Plant Growth Regulation 24: 211-217.
VanBuren, R. 2017. Desiccation tolerance: seedy origins of resurrection. Nature Plants 3: 17046.
VanBuren, R., C. Man Wai, J. Pardo, V. Giarola, S. Ambrosini, X. Song, and D. Bartels. 2018. Desiccation tolerance evolved through gene duplication and network rewiring in Lindernia. Plant Cell 30: 2943-2958.
VanBuren, R., J. Pardo, C. Man Wai, S. Evans, and D. Bartels. 2019. Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants. Plant Physiology 179: 1040-1049.
Vander Willigen, C., N. W. Pammenter, S. Mundree, and J. Farrant. 2001. Some physiological comparisons between the resurrection grass, Eragrostis nindensis, and the related desiccation-sensitive species, E. curvula. Plant Growth Regulation 35: 121-129.
Vicré, M., J. M. Farrant, and A. Driouich. 2004. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant, Cell and Environment 27: 1329-1340.
Ward, A. D., and S. W. Trimble. 2004. Environmental hydrology. CRC Press, Boca Raton, FL, USA.
Watkins, J. E., M. C. Mack, T. R. Sinclair, and S. S. Mulkey. 2007. Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist 176: 708-717.
Williams, B., I. Njaci, L. Moghaddam, H. Long, M. B. Dickman, X. Zhang, and S. Mundree. 2015. Trehalose accumulation triggers autophagy during plant desiccation. PLoS Genetics 11: e1005705.
Yobi, A., K. A. Schlauch, R. L. Tillett, W. C. Yim, C. Espinoza, B. W. M. Wone, J. C. Cushman, et al. 2017. Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC Plant Biology 17: 67.
Yobi, A., B. W. M. Wone, W. Xu, and D. C. Alexander. 2012. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant Journal 72: 983-999.
Zamir, D. 2008. Plant breeders go back to nature. Nature Genetics 40: 269-270.
Zhang, Q., and D. Bartels. 2018. Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants. Journal of Experimental Botany 69: 3211-3222.
Zhu, Y., B. Wang, J. Phillips, Z.-N. Zhang, H. Du, T. Xu, L.-C. Huang, et al. 2015. Global transcriptome analysis reveals acclimation-primed processes involved in the acquisition of desiccation tolerance in Boea hygrometrica. Plant & Cell Physiology 56: 1429-1441.