Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
05 2021
Historique:
received: 31 07 2020
accepted: 24 11 2020
revised: 17 11 2020
pubmed: 17 1 2021
medline: 3 6 2021
entrez: 16 1 2021
Statut: ppublish

Résumé

The adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen's ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.

Identifiants

pubmed: 33452474
doi: 10.1038/s41396-020-00859-w
pii: 10.1038/s41396-020-00859-w
pmc: PMC8115182
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1402-1419

Références

Laine AL, Barrès B. Epidemiological and evolutionary consequences of life‐history trade‐offs in pathogens. Plant Pathol. 2013;62:96–105.
doi: 10.1111/ppa.12129
Lannou C. Variation and selection of quantitative traits in plant pathogens. Ann Rev Phytopathol. 2012;50:319–38.
Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85:411–26.
pubmed: 6755367 doi: 10.1017/S0031182000055360
Roff DA. Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. J Evolut Biol. 2000;13:434–45.
doi: 10.1046/j.1420-9101.2000.00186.x
Stearns SC. Trade-offs in life-history evolution. Funct Ecol. 1989;3:259–68.
doi: 10.2307/2389364
Hughes KA, Leips J. Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Ann N Y Acad Sci. 2017;1389:76.
pubmed: 27936291 doi: 10.1111/nyas.13256
Trivedi P, Wang N. Host immune responses accelerate pathogen evolution. ISME J. 2014;8:727–31.
pubmed: 24304673 doi: 10.1038/ismej.2013.215
Rodríguez-Verdugo A, Carrillo-Cisneros D, González-González A, Gaut BS, Bennett AF. Different tradeoffs result from alternate genetic adaptations to a common environment. Proc Natl Acad Sci USA. 2014;111:12121–6.
pubmed: 25092325 pmcid: 4143048 doi: 10.1073/pnas.1406886111
Hill JA, O’Meara TR, Cowen LE. Fitness trade-offs associated with the evolution of resistance to antifungal drug combinations. Cell Rep. 2015;10:809–19.
pubmed: 25660029 doi: 10.1016/j.celrep.2015.01.009
Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS ONE. 2009; p. e4224.
Wagner GP, Zhang J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet. 2011;12:204–13.
pubmed: 21331091 doi: 10.1038/nrg2949
Wang Z, Liao BY, Zhang J. Genomic patterns of pleiotropy and the evolution of complexity. Proc Natl Acad Sci USA. 2010;107:18034–9.
pubmed: 20876104 pmcid: 2964231 doi: 10.1073/pnas.1004666107
Roff DA. Contributions of genomics to life-history theory. Nat Rev Genet. 2007;8:116–25.
pubmed: 17230198 doi: 10.1038/nrg2040
Saltz JB, Hessel FC, Kelly MW. Trait correlations in the genomics era. Trends Ecol evolution. 2017;32:279–90.
doi: 10.1016/j.tree.2016.12.008
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, et al. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life‐history adaptation in Drosophila. Evolution. 2019;73:1774–92.
pubmed: 31111462 pmcid: 6771989 doi: 10.1111/evo.13759
Fletcher RS, Mullen JL, Heiliger A, McKay JK. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot. 2015;66:245–56.
pubmed: 25371500 doi: 10.1093/jxb/eru423
Lendenmann MH, Croll D, McDonald BA. QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genet Biol. 2015;80:53–67.
pubmed: 25979163 doi: 10.1016/j.fgb.2015.05.001
Scarcelli N, Cheverud JM, Schaal BA, Kover PX. Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus. Proc Natl Acad Sci USA. 2007;104:16986–91.
pubmed: 17940010 pmcid: 2040464 doi: 10.1073/pnas.0708209104
Chen P, Zhang J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat Ecol Evol. 2020;4:461–9.
pubmed: 32042119 pmcid: 7058517 doi: 10.1038/s41559-020-1107-8
Hill WG, Zhang XS. On the pleiotropic structure of the genotype–phenotype map and the evolvability of complex organisms. Genetics. 2012;190:1131–7.
pubmed: 22214609 pmcid: 3296247 doi: 10.1534/genetics.111.135681
Fones H, Gurr S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet Biol. 2015;79:3–7.
pubmed: 26092782 pmcid: 4502551 doi: 10.1016/j.fgb.2015.04.004
Torriani SF, Melichar JP, Mills C, Pain N, Sierotzki H, Courbot M. Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genet Biol. 2015;79:8–12.
pubmed: 26092783 doi: 10.1016/j.fgb.2015.04.010
Croll D, McDonald BA. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol Ecol. 2017;26:2027–40.
pubmed: 27696587 doi: 10.1111/mec.13870
Dutta A, Croll D, McDonald BA, Barrett LG. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evol Appl. 2020;00:1–13.
Zhan J, Stefanato FL, McDonald BA. Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Mol Plant Pathol. 2006;7:259–68.
pubmed: 20507445 doi: 10.1111/j.1364-3703.2006.00336.x
Zhan J, McDonald BA. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol Ecol. 2011;20:1689–701.
pubmed: 21395890 doi: 10.1111/j.1365-294X.2011.05023.x
Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, et al. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol. 2018;16:78.
pubmed: 30012138 pmcid: 6047131 doi: 10.1186/s12915-018-0543-2
Francisco CS, Ma X, Zwyssig MM, McDonald BA, Palma-Guerrero J. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci Rep. 2019;9:1–18.
doi: 10.1038/s41598-019-45994-3
Sánchez‐Vallet A, Hartmann FE, Marcel TC, Croll D. Nature’s genetic screens: using genome‐wide association studies for effector discovery. Mol plant Pathol. 2018;19:3.
pubmed: 29226559 doi: 10.1111/mpp.12592
Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 2017;11:1189–204.
pubmed: 28117833 pmcid: 5437930 doi: 10.1038/ismej.2016.196
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol. 2020;18:1–18.
doi: 10.1186/s12915-020-0744-3
Goodwin SB, M’Barek SB, Dhillon B, Wittenberg AH, Crane CF, Hane JK, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011;7:6.
doi: 10.1371/journal.pgen.1002070
Zhan J, Linde CC, Jürgens T, Merz U, Steinebrunner F, McDonald BA. Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol. 2005;14:2683–93.
pubmed: 16029470 doi: 10.1111/j.1365-294X.2005.02638.x
Linde CC, Zhan J, McDonald BA. Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology. 2002;92:946–55.
pubmed: 18944019 doi: 10.1094/PHYTO.2002.92.9.946
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Hartmann FE, McDonald BA, Croll D. Genome-wide evidence for divergent selection between populations of a major agricultural pathogen. Molecular Ecology. 2018;27:2725–41.
pubmed: 29729657 pmcid: 6032900 doi: 10.1111/mec.14711
McIntosh RA. Close genetic linkage of genes conferring adult‐plant resistance to leaf rust and stripe rust in wheat. Plant Pathol. 1992;41:523–7.
doi: 10.1111/j.1365-3059.1992.tb02450.x
Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet. 2005;111:731–5.
pubmed: 15965649 doi: 10.1007/s00122-005-2058-9
Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, et al. Ranking quantitative resistance to Septoria tritici blotch in elite wheat cultivars using automated image analysis. Phytopathology. 2018;108:568–81.
pubmed: 29210601 doi: 10.1094/PHYTO-04-17-0163-R
Francisco, CS, McDonald, BA, Palma-Guerrero, J. Regulatory mechanisms of morphological transitions in response to temperature stress in a fungal pathogen. 2020. In preparation.
Lendenmann MH, Croll D, Palma-Guerrero J, Stewart EL, McDonald BA. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity. 2016;116:384–94.
pubmed: 26758189 pmcid: 4806695 doi: 10.1038/hdy.2015.111
Lendenmann MH, Croll D, Stewart EL, McDonald BA. Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici. G3: Genes, Genomes. Genetics. 2014;4:2519–33.
Mohd‐Assaad N, McDonald BA, Croll D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol. 2016;25:6124–42.
pubmed: 27859799 doi: 10.1111/mec.13916
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PloS One. 2015;10:12.
doi: 10.1371/journal.pone.0146021
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. http://www.R-project.org/ .
Döring TF, Reckling M. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur J Agron. 2018;99:30–36.
doi: 10.1016/j.eja.2018.06.007
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
pubmed: 17586829 doi: 10.1093/bioinformatics/btm308
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.
pubmed: 21167468 pmcid: 3014363 doi: 10.1016/j.ajhg.2010.11.011
Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4.
doi: 10.1214/aos/1176344136
Tang, Y, Liu, X, Wang, J, Li, M, Wang, Q, Tian, F, et. al. GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome. 2016;9:1–9.
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
pubmed: 16380716 doi: 10.1038/ng1702
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
pubmed: 20208535 pmcid: 2931336 doi: 10.1038/ng.546
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.
pubmed: 12883005 pmcid: 170937 doi: 10.1073/pnas.1530509100
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B. 1995;57:289–300.
Grandaubert J, Bhattacharyya A, Stukenbrock EH. RNA-seq-based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3: Genes Genomes Genet. 2015;5:1323–33.
doi: 10.1534/g3.115.017731
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
pubmed: 24451626 pmcid: 3998142 doi: 10.1093/bioinformatics/btu031
Nielsen H. Predicting secretory proteins with SignalP. In Protein function prediction (pp. 59-73). New York, NY: Humana Press; 2107.
Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic acids Res. 2007;35:W429–32.
pubmed: 17483518 pmcid: 1933244 doi: 10.1093/nar/gkm256
Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
pubmed: 11152613 doi: 10.1006/jmbi.2000.4315
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
pubmed: 17098774 doi: 10.1093/bioinformatics/btl567
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565.
pubmed: 20562875 pmcid: 3232052 doi: 10.1038/ng.608
Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017;49:1304.
pubmed: 28854176 doi: 10.1038/ng.3941
Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012;28:2540–2.
pubmed: 22843982 pmcid: 3463125 doi: 10.1093/bioinformatics/bts474
Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012;48:1–18.
doi: 10.18637/jss.v048.i04
Kornbrot D. Point Biserial Correlation. Wiley StatsRef: Statistics Reference Online: New York, Wiley, 2014.
Rizopoulos D. ltm: An R package for latent variable modeling and item response theory analyses. J Stat Softw. 2006;17:1–25.
doi: 10.18637/jss.v017.i05
Cools HJ, Fraaije BA. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci. 2012;69:150–5.
pubmed: 22730104 doi: 10.1002/ps.3348
Hartmann FE, Vonlanthen T, Singh NK, McDonald M, Milgate A, Croll D. The complex genomic basis of rapid convergent adaptation to pesticides across continents in a fungal plant pathogen. Molecular Ecology. 2020;00:1–16.
Pereira D, McDonald BA, Croll D. The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biol. Evol. 2020;12:2231–44.
Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, et al. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. N. Phytologist. 2018;219:1048–61.
doi: 10.1111/nph.15180
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, et al. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. N. Phytologist. 2017;214:619–31.
doi: 10.1111/nph.14434
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, et al. Understanding adaptation, coevolution, host specialization, and mating system in castrating anther-smut fungi by combining population and comparative genomics. Annu Rev Phytopathol. 2019;57:431–57.
pubmed: 31337277 doi: 10.1146/annurev-phyto-082718-095947
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant methods. 2013;9:29.
pubmed: 23876160 pmcid: 3750305 doi: 10.1186/1746-4811-9-29
Slate J. From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution. 2013;67:1251–62.
pubmed: 23617906
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173.
pubmed: 25282103 pmcid: 4250049 doi: 10.1038/ng.3097
Höllinger I, Pennings PS, Hermisson J. Polygenic adaptation: from sweeps to subtle frequency shifts. PLoS Genet. 2019;15:e1008035.
pubmed: 30893299 pmcid: 6443195 doi: 10.1371/journal.pgen.1008035
Leggett HC, Buckling A, Long GH, Boots M. Generalism and the evolution of parasite virulence. Trends Ecol Evol. 2013;28:592–6.
pubmed: 23968968 doi: 10.1016/j.tree.2013.07.002
Pettay JE, Kruuk LE, Jokela J, Lummaa V. Heritability and genetic constraints of life-history trait evolution in preindustrial humans. Proc Natl Acad Sci USA. 2005;102:2838–43.
pubmed: 15701704 pmcid: 549452 doi: 10.1073/pnas.0406709102
McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002;40:349–79.
pubmed: 12147764 doi: 10.1146/annurev.phyto.40.120501.101443
McDonald BA, Stukenbrock EH. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos Trans R Soc B: Biol Sci. 2016;371:20160026.
doi: 10.1098/rstb.2016.0026
Reznick D. Measuring reproductive costs: response to Partridge. Trends Ecol Evol. 1992;7:134.
pubmed: 21235983 doi: 10.1016/0169-5347(92)90150-A
Roff DA. The evolution of life histories: theory and analysis. New York, NY: Chapman and Hall; 1992. p. 535.
McGee LW, Sackman AM, Morrison AJ, Pierce J, Anisman J, Rokyta DR. Synergistic pleiotropy overrides the costs of complexity in viral adaptation. Genetics. 2016;202:285–95.
Sgrò CM, Hoffmann AA. Genetic correlations, tradeoffs and environmental variation. Heredity. 2004;93:241–8.
pubmed: 15280897 doi: 10.1038/sj.hdy.6800532
Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236.
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20:567–81.
pubmed: 31171865 doi: 10.1038/s41576-019-0137-z
Zhan J, Pettway RE, McDonald BA. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol. 2003;38:286–97.
pubmed: 12684018 doi: 10.1016/S1087-1845(02)00538-8
Croll D, Lendenmann MH, Stewart E, McDonald BA. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics. 2015;201:1213–28.
pubmed: 26392286 pmcid: 4649646 doi: 10.1534/genetics.115.180968
Brown JK, Chartrain L, Lasserre-Zuber P, Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol. 2015;79:33–41.
pubmed: 26092788 pmcid: 4510316 doi: 10.1016/j.fgb.2015.04.017
Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evolut Biol. 2002;15:173–90.
doi: 10.1046/j.1420-9101.2002.00377.x
Legros M, Koella JC. Experimental evolution of specialization by a microsporidian parasite. BMC Evolut Biol. 2010;10:159.
doi: 10.1186/1471-2148-10-159
Thrall PH, Barrett LG, Burdon JJ, Alexander HM. Variation in pathogen aggressiveness within a metapopulation of the Cakile maritima–Alternaria brassicicola host–pathogen association. Plant Pathol. 2005;54:265–74.
doi: 10.1111/j.1365-3059.2005.01190.x
Lee DH, Roux J, Wingfield BD, Wingfield MJ. Variation in growth rates and aggressiveness of naturally occurring self‐fertile and self‐sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathol. 2015;64:1103–9.
doi: 10.1111/ppa.12349
Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CR. Pleiotropy as a mechanism to stabilize cooperation. Nature. 2004;431:693–6.
pubmed: 15470429 doi: 10.1038/nature02894
Frénoy A, Taddei F, Misevic D. Genetic architecture promotes the evolution and maintenance of cooperation. PLoS Comput Biol. 2013;9:11.
doi: 10.1371/journal.pcbi.1003339
Wright S. Evolution and the genetics of populations, volume 1: genetic and biometric foundations (Vol. 1). University of Chicago press, Chicago; 1984.

Auteurs

Anik Dutta (A)

Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.

Fanny E Hartmann (FE)

Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France.

Carolina Sardinha Francisco (CS)

Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
Environmental Genomics Group, Botanical Institute, CAU, Kiel, Germany.

Bruce A McDonald (BA)

Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.

Daniel Croll (D)

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland. daniel.croll@unine.ch.

Articles similaires

Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Biological Evolution History, 20th Century Selection, Genetic History, 19th Century Biology
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH