Degradation of complex arabinoxylans by human colonic Bacteroidetes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 01 2021
Historique:
received: 27 02 2019
accepted: 09 12 2020
entrez: 20 1 2021
pubmed: 21 1 2021
medline: 2 2 2021
Statut: epublish

Résumé

Some Bacteroidetes and other human colonic bacteria can degrade arabinoxylans, common polysaccharides found in dietary fiber. Previous work has identified gene clusters (polysaccharide-utilization loci, PULs) for degradation of simple arabinoxylans. However, the degradation of complex arabinoxylans (containing side chains such as ferulic acid, a phenolic compound) is poorly understood. Here, we identify a PUL that encodes multiple esterases for degradation of complex arabinoxylans in Bacteroides species. The PUL is specifically upregulated in the presence of complex arabinoxylans. We characterize some of the esterases biochemically and structurally, and show that they release ferulic acid from complex arabinoxylans. Growth of four different colonic Bacteroidetes members, including Bacteroides intestinalis, on complex arabinoxylans results in accumulation of ferulic acid, a compound known to have antioxidative and immunomodulatory properties.

Identifiants

pubmed: 33469030
doi: 10.1038/s41467-020-20737-5
pii: 10.1038/s41467-020-20737-5
pmc: PMC7815789
doi:

Substances chimiques

Bacterial Proteins 0
Coumaric Acids 0
Dietary Fiber 0
Xylans 0
arabinoxylan 9040-27-1
ferulic acid AVM951ZWST
Esterases EC 3.1.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

459

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM140306
Pays : United States

Références

J Bacteriol. 2010 Jan;192(2):483-93
pubmed: 19897648
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
J Agric Food Chem. 2011 Nov 9;59(21):11598-607
pubmed: 21954887
J Chem Phys. 2004 Apr 8;120(14):6363-74
pubmed: 15267525
Cell. 2010 Jun 25;141(7):1241-52
pubmed: 20603004
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
PLoS One. 2018 Apr 26;13(4):e0196358
pubmed: 29698436
J Bacteriol. 2001 Apr;183(8):2614-23
pubmed: 11274122
Nat Microbiol. 2018 Nov;3(11):1314-1326
pubmed: 30349080
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
pubmed: 21460441
Nature. 2017 Jan 19;541(7637):407-411
pubmed: 28077872
Nat Microbiol. 2018 Feb;3(2):127-129
pubmed: 29358680
J Chem Theory Comput. 2017 Sep 12;13(9):4584-4592
pubmed: 28800393
Nat Microbiol. 2018 May;3(5):570-580
pubmed: 29610517
Acta Crystallogr D Biol Crystallogr. 2009 Jun;65(Pt 6):582-601
pubmed: 19465773
J Mol Biol. 1993 Jan 5;229(1):105-24
pubmed: 7678431
Acta Crystallogr D Biol Crystallogr. 2007 Apr;63(Pt 4):447-57
pubmed: 17372348
Nat Rev Microbiol. 2012 Apr 11;10(5):323-35
pubmed: 22491358
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6537-42
pubmed: 22492980
Int J Syst Evol Microbiol. 2008 Apr;58(Pt 4):1008-13
pubmed: 18398210
J Chem Phys. 2011 May 7;134(17):174105
pubmed: 21548671
J Mol Biol. 1993 Dec 5;234(3):779-815
pubmed: 8254673
Living J Comput Mol Sci. 2019;1(1):
pubmed: 31788666
Trends Microbiol. 2016 Mar;24(3):198-208
pubmed: 26711681
ISME J. 2012 Aug;6(8):1535-43
pubmed: 22343308
PLoS One. 2013 Dec 31;8(12):e84033
pubmed: 24391873
J Chem Theory Comput. 2015 Apr 14;11(4):1864-74
pubmed: 26574392
J Clin Biochem Nutr. 2007 Mar;40(2):92-100
pubmed: 18188410
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3708-17
pubmed: 25136124
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
Science. 2012 Jun 8;336(6086):1262-7
pubmed: 22674330
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9
pubmed: 18094468
J Appl Microbiol. 2001 Jun;90(6):873-81
pubmed: 11412317
Nat Microbiol. 2018 Feb;3(2):210-219
pubmed: 29255254
J Comput Chem. 2009 Oct;30(13):2157-64
pubmed: 19229944
PLoS Biol. 2013;11(8):e1001637
pubmed: 23976882
Methods Enzymol. 1997;276:307-26
pubmed: 27754618
Biochim Biophys Acta. 1975 Oct 31;415(3):335-77
pubmed: 52377
Glob Change Biol Bioenergy. 2009 Feb 18;1(1):2-17
pubmed: 20431716
Nat Protoc. 2013 Sep;8(9):1765-86
pubmed: 23975260
J Am Chem Soc. 2018 Feb 21;140(7):2386-2396
pubmed: 29323881
Nature. 2017 Apr 6;544(7648):65-70
pubmed: 28329766
Anal Biochem. 1972 May;47(1):273-9
pubmed: 5031119
Carbohydr Res. 1994 Oct 17;263(2):243-56
pubmed: 7805052
Food Chem. 2017 May 15;223:49-53
pubmed: 28069122
J Mol Biol. 2013 Aug 9;425(15):2737-51
pubmed: 23648840
PLoS One. 2015 Feb 06;10(2):e0117732
pubmed: 25658944
Mol Microbiol. 2011 Jan;79(2):292-304
pubmed: 21219452
Nature. 2009 Jan 22;457(7228):480-4
pubmed: 19043404
Cell Host Microbe. 2008 Apr 17;3(4):213-23
pubmed: 18407065
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95
pubmed: 26583988
Biophys J. 2015 Oct 20;109(8):1528-32
pubmed: 26488642
J Mol Biol. 2017 Aug 4;429(16):2509-2527
pubmed: 28669823
Gut Microbes. 2012 Jul-Aug;3(4):289-306
pubmed: 22572875
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Annu Rev Microbiol. 2016 Sep 8;70:103-24
pubmed: 27607549
J Biol Chem. 1981 Mar 25;256(6):3125-9
pubmed: 7009608
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Bioinformatics. 2002 Jan;18(1):211-2
pubmed: 11836237
Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2141-2146
pubmed: 12508881
J Biol Chem. 2011 Jul 22;286(29):25973-82
pubmed: 21507958
Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
pubmed: 12393927
J Bacteriol. 1983 Feb;153(2):1051-5
pubmed: 6822473
Nat Rev Microbiol. 2013 Jul;11(7):497-504
pubmed: 23748339
J Nutr Biochem. 2002 May;13(5):273-281
pubmed: 12015157
J Bacteriol. 2000 Oct;182(19):5365-72
pubmed: 10986238
J Chem Theory Comput. 2010;6(3):787-94
pubmed: 23626502
Int J Immunopathol Pharmacol. 2004 Sep-Dec;17(3):283-92
pubmed: 15461862
Sci Rep. 2016 Sep 29;6:34360
pubmed: 27681607
Appl Environ Microbiol. 1997 Jan;63(1):208-12
pubmed: 8979352
Biochim Biophys Acta. 2005 Aug 10;1751(2):119-39
pubmed: 16027053
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
Nat Commun. 2015 Jun 26;6:7481
pubmed: 26112186
Environ Microbiol. 2010 Feb;12(2):304-14
pubmed: 19807780
Int J Biol Macromol. 2018 Apr 1;109:819-831
pubmed: 29133103
Appl Environ Microbiol. 2002 Oct;68(10):5186-90
pubmed: 12324374
PLoS Biol. 2011 Dec;9(12):e1001221
pubmed: 22205877
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
J Bacteriol. 1996 Feb;178(3):823-30
pubmed: 8550519
Biotechnol Rep (Amst). 2014 Sep 16;4:86-93
pubmed: 28626667
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7298-303
pubmed: 22532667
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1260-73
pubmed: 23793152
J Chem Theory Comput. 2015 Nov 10;11(11):5525-42
pubmed: 26574340

Auteurs

Gabriel V Pereira (GV)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Ahmed M Abdel-Hamid (AM)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Botany and Microbiology, Faculty of Science, Minia University, 61519, El-Minia, Egypt.

Soumajit Dutta (S)

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Corina N D'Alessandro-Gabazza (CN)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Immunology, Mie University, Tsu City, Mie, 514, Japan.

Daniel Wefers (D)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Jacob A Farris (JA)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61874, USA.

Shiv Bajaj (S)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61874, USA.

Zdzislaw Wawrzak (Z)

Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA.

Haruyuki Atomi (H)

Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan.

Roderick I Mackie (RI)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Esteban C Gabazza (EC)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Immunology, Mie University, Tsu City, Mie, 514, Japan.

Diwakar Shukla (D)

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Nicole M Koropatkin (NM)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Microbiology and Immunology, University of Michigan. Medical School, Ann Arbor, MI, 48109, USA.

Isaac Cann (I)

Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.
Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.
Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.
School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61874, USA. icann@illinois.edu.
Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan. icann@illinois.edu.
Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.
Center for East Asian & Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. icann@illinois.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH