Sexually dimorphic roles for the type 2 diabetes-associated C2cd4b gene in murine glucose homeostasis.
Animals
Biomarkers
/ blood
Blood Glucose
/ genetics
Diabetes Mellitus, Type 2
/ genetics
Female
Follicle Stimulating Hormone
/ blood
Genotype
Homeostasis
/ genetics
Humans
Insulin
/ blood
Insulin-Secreting Cells
/ metabolism
Male
Mice, Inbred C57BL
Mice, Knockout
Nuclear Proteins
/ genetics
Phenotype
Pituitary Gland
/ metabolism
Sex Characteristics
Transcription Factors
/ genetics
Weight Gain
Zebrafish
/ blood
Zebrafish Proteins
/ blood
C2CD4A/B
Follicle-stimulating hormone
Genome-wide association studies
Glucose homeostasis
Type 2 diabetes
Journal
Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
11
06
2020
accepted:
28
10
2020
pubmed:
26
1
2021
medline:
16
2
2022
entrez:
25
1
2021
Statut:
ppublish
Résumé
Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.
Identifiants
pubmed: 33492421
doi: 10.1007/s00125-020-05350-x
pii: 10.1007/s00125-020-05350-x
pmc: PMC7829492
doi:
Substances chimiques
Biomarkers
0
Blood Glucose
0
C2cd4b protein, mouse
0
Insulin
0
Nuclear Proteins
0
Transcription Factors
0
Zebrafish Proteins
0
Follicle Stimulating Hormone
9002-68-0
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
850-864Subventions
Organisme : Medical Research Council
ID : MR/S025618/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK115620
Pays : United States
Organisme : Medical Research Council
ID : MR/N00275X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L020149/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT212625/Z/18/Z
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P023223/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : T32 DK101003
Pays : United States
Organisme : Medical Research Council
ID : MR/J0003042/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK123162
Pays : United States
Organisme : Medical Research Council
ID : MC-A654-5QB40
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L02036X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R014329/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U120097114
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R022259/1
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R01 DK097392
Pays : United States
Organisme : Wellcome Trust
ID : WT098424AIA
Pays : United Kingdom
Références
Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet:245506. https://doi.org/10.1101/245506
Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24(12):613–621. https://doi.org/10.1016/j.tig.2008.09.004
doi: 10.1016/j.tig.2008.09.004
pubmed: 18952314
pmcid: 7116807
Carrat GR, Hu M, Nguyen-Tu M-S et al (2017) Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. Am J Hum Genet 100(2):238–256. https://doi.org/10.1016/j.ajhg.2017.01.011
doi: 10.1016/j.ajhg.2017.01.011
pubmed: 28132686
pmcid: 5294761
Rutter GA, Chimienti F (2015) SLC30A8 mutations in type 2 diabetes. Diabetologia 58(1):31–36. https://doi.org/10.1007/s00125-014-3405-7
doi: 10.1007/s00125-014-3405-7
pubmed: 25287711
Prokopenko I, Poon W, Mägi R et al (2014) A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genet 10(4):1–13. https://doi.org/10.1371/journal.pgen.1004235
doi: 10.1371/journal.pgen.1004235
Kumar N, Leonzino M, Hancock-Cerutti W et al (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217(10):3625–3639. https://doi.org/10.1083/jcb.201807019
doi: 10.1083/jcb.201807019
pubmed: 30093493
pmcid: 6168267
Mehta ZB, Fine N, Pullen TJ et al (2016) Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β-cell are associated with glucose intolerance in humans and mice. Am J Physiol Endocrinol Metab 311(2):E488–E507. https://doi.org/10.1152/ajpendo.00074.2016
doi: 10.1152/ajpendo.00074.2016
pubmed: 27329800
pmcid: 5005967
Varshney A, Scott LJ, Welch RP et al (2017) Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci 114(9):2301–2306. https://doi.org/10.1073/pnas.1621192114
doi: 10.1073/pnas.1621192114
pubmed: 28193859
Kycia I, Wolford BN, Huyghe JR et al (2018) A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. Am J Hum Genet 102(4):620–635. https://doi.org/10.1016/j.ajhg.2018.02.020
doi: 10.1016/j.ajhg.2018.02.020
pubmed: 29625024
pmcid: 5985342
Warton K, Foster NC, Gold WA, Stanley KK (2004) A novel gene family induced by acute inflammation in endothelial cells. Gene 342(1):85–95. https://doi.org/10.1016/j.gene.2004.07.027
doi: 10.1016/j.gene.2004.07.027
pubmed: 15527968
Omori H, Ogaki S, Sakano D et al (2016) Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development. FEBS Lett 590:2584–2593. https://doi.org/10.1002/1873-3468.12271
doi: 10.1002/1873-3468.12271
pubmed: 27349930
pmcid: 5129588
Gilon P, Chae H-Y, Rutter GA, Ravier MA (2014) Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 56(5):340–361. https://doi.org/10.1016/j.ceca.2014.09.001
doi: 10.1016/j.ceca.2014.09.001
pubmed: 25239387
O’Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA (2016) Assignment of functional relevance to genes at type 2 diabetes-associated loci through investigation of β-Cell mass deficits. Mol Endocrinol 30(4):429–445. https://doi.org/10.1210/me.2015-1243
doi: 10.1210/me.2015-1243
pubmed: 26963759
pmcid: 4814477
Peiris H, Park S, Louis S et al (2018) Discovering human diabetes-risk gene function with genetics and physiological assays. Nat Commun 9(1):3855. https://doi.org/10.1038/s41467-018-06249-3
doi: 10.1038/s41467-018-06249-3
pubmed: 30242153
pmcid: 6155000
Kuo T, Kraakman MJ, Damle M, Gill R, Lazar MA, Accili D (2019) Identification of C2CD4A as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proc Natl Acad Sci U S A 116(4):20033–20042. https://doi.org/10.1073/pnas.1904311116
doi: 10.1073/pnas.1904311116
pubmed: 31527256
pmcid: 6778232
Pullen TJ, Huising MO, Rutter GA (2017) Analysis of purified pancreatic islet beta and alpha cell transcriptomes reveals 11β-hydroxysteroid dehydrogenase (Hsd11b1) as a novel disallowed gene. Front Genet 8:41. https://doi.org/10.3389/fgene.2017.00041
doi: 10.3389/fgene.2017.00041
pubmed: 28443133
pmcid: 5385341
Brouwers B, De Faudeur G, Osipovich AB et al (2014) Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 20(6):979–990. https://doi.org/10.1016/j.cmet.2014.11.004
doi: 10.1016/j.cmet.2014.11.004
pubmed: 25470546
pmcid: 5674787
Owen BM, Bookout AL, Ding X et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19(9):1153–1156. https://doi.org/10.1038/nm.3250
doi: 10.1038/nm.3250
pubmed: 23933983
pmcid: 3769455
Ravier MA, Rutter GA (2010) Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. In: Ward A, Tosh D (eds) Mouse cell culture: methods and protocols. Humana Press, Totowa, pp 171–184
doi: 10.1007/978-1-59745-019-5_12
Nguyen-Tu M-S, da Silva Xavier G, Leclerc I, Rutter GA (2018) Transcription factor-7-like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion. J Biol Chem 293(36):14178–14189. https://doi.org/10.1074/jbc.RA118.003613
doi: 10.1074/jbc.RA118.003613
pubmed: 29967064
pmcid: 6130960
Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49(3):424–430. https://doi.org/10.2337/diabetes.49.3.424
doi: 10.2337/diabetes.49.3.424
pubmed: 10868964
Westerfield M (1995) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 3rd edition. Univ Oregon Press, Eugene
Fisher S, Grice EA, Vinton RM et al (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1(3):1297–1305. https://doi.org/10.1038/nprot.2006.230
doi: 10.1038/nprot.2006.230
pubmed: 17406414
Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312(5771):276–279. https://doi.org/10.1126/science.1124070
doi: 10.1126/science.1124070
pubmed: 16556802
Mavropoulos A, Devos N, Biemar F et al (2005) sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 285(1):211–223. https://doi.org/10.1016/j.ydbio.2005.06.024
doi: 10.1016/j.ydbio.2005.06.024
pubmed: 16055112
Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69. https://doi.org/10.1038/nprot.2007.514
doi: 10.1038/nprot.2007.514
pubmed: 18193022
Flasse LC, Pirson JL, Stern DG et al (2013) Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 11(1):78. https://doi.org/10.1186/1741-7007-11-78
doi: 10.1186/1741-7007-11-78
pubmed: 23835295
pmcid: 3726459
Salem V, Silva LD, Suba K et al (2019) Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat Metab 1(6):615–629. https://doi.org/10.1038/s42255-019-0075-2
doi: 10.1038/s42255-019-0075-2
pubmed: 32694805
Hodson DJ, Mitchell RK, Bellomo EA et al (2013) Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 123(10):4182–4194. https://doi.org/10.1172/JCI68459
doi: 10.1172/JCI68459
pubmed: 24018562
pmcid: 4382273
Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597. https://doi.org/10.1172/JCI58447DS1
doi: 10.1172/JCI58447DS1
pubmed: 21865645
pmcid: 3163974
Miyazaki J-I, Araki K, Yamato E et al (1990) Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1):126–132. https://doi.org/10.1210/endo-127-1-126
doi: 10.1210/endo-127-1-126
pubmed: 2163307
Millership SJ, Da Silva Xavier G, Choudhury AI et al (2018) Neuronatin regulates pancreatic β cell insulin content and secretion. J Clin Invest 128(8):3369–3381. https://doi.org/10.1172/JCI120115
doi: 10.1172/JCI120115
pubmed: 29864031
pmcid: 6063487
Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15(1):620. https://doi.org/10.1186/1471-2164-15-620
doi: 10.1186/1471-2164-15-620
pubmed: 25051960
pmcid: 4124169
Kone M, Pullen TJ, Sun G et al (2014) LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J 28(11):4972–4985. https://doi.org/10.1096/fj.14-257667
doi: 10.1096/fj.14-257667
pubmed: 25070369
pmcid: 4377859
Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5(7):e11499. https://doi.org/10.1371/journal.pone.0011499
doi: 10.1371/journal.pone.0011499
pubmed: 20644627
pmcid: 2903480
Blodgett DM, Nowosielska A, Afik S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64(9):3172–3181. https://doi.org/10.2337/db15-0039
doi: 10.2337/db15-0039
pubmed: 25931473
pmcid: 4542439
Cruciani-Guglielmacci C, Bellini L, Denom J et al (2017) Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol Metab 6(4):340–351. https://doi.org/10.1016/j.molmet.2017.01.009
doi: 10.1016/j.molmet.2017.01.009
pubmed: 28377873
pmcid: 5369210
Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61(3):641–657. https://doi.org/10.1007/s00125-017-4500-3
doi: 10.1007/s00125-017-4500-3
pubmed: 29185012
Miguel-Escalada I, Bonàs-Guarch S, Cebola I et al (2019) Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51(7):1137–1148. https://doi.org/10.1038/s41588-019-0457-0
doi: 10.1038/s41588-019-0457-0
pubmed: 31253982
pmcid: 6640048
Idevall-hagren O, Lü A, Xie B, De Camilli P (2015) Triggered Ca 2 + influx is required for extended membrane tethering. EMBO J 34(17):2291–2305
doi: 10.15252/embj.201591565
Shichiri M, Ishimaru S, Ota T, Nishikawa T, Isogai T, Hirata Y (2003) Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med 9(9):1166–1172. https://doi.org/10.1038/nm913
doi: 10.1038/nm913
pubmed: 12910263
Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21(10):599–609. https://doi.org/10.1016/j.tem.2010.06.003
doi: 10.1016/j.tem.2010.06.003
pubmed: 20609596
Grarup N, Overvad M, Sparsø T et al (2011) The diabetogenic VPS13C/C2CD4A/C2CD4B rs7172432 variant impairs glucose-stimulated insulin response in 5,722 non-diabetic Danish individuals. Diabetologia 54(4):789–794. https://doi.org/10.1007/s00125-010-2031-2
doi: 10.1007/s00125-010-2031-2
pubmed: 21249489
Alonso-Magdalena P, Ropero AB, Carrera MP et al (2008) Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα. PLoS One 3(4):e2069
doi: 10.1371/journal.pone.0002069
Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr Rev 34(3):309–338. https://doi.org/10.1210/er.2012-1055
doi: 10.1210/er.2012-1055
pubmed: 23460719
pmcid: 3660717
Saito T, Ciobotaru A, Bopassa JC, Toro L, Stefani E, Eghbali M (2009) Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res 105(4):343–352. https://doi.org/10.1161/CIRCRESAHA.108.190041
doi: 10.1161/CIRCRESAHA.108.190041
pubmed: 19608983
pmcid: 2921935
Mauvais-Jarvis F (2017) Epidemiology of gender differences in diabetes and obesity. In: Mauvais-Jarvis F (ed) Sex and gender factors affecting metabolic homeostasis, diabetes and obesity. Springer International Publishing, Cham, pp 3–8
doi: 10.1007/978-3-319-70178-3_1
Strawbridge RJ, Dupuis J, Prokopenko I et al (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60(10):2624–2634. https://doi.org/10.2337/db11-0415
doi: 10.2337/db11-0415
pubmed: 21873549
pmcid: 3178302
Mahajan A, Wessel J, Willems SM et al (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes article. Nat Genet 50(4):559–571. https://doi.org/10.1038/s41588-018-0084-1
doi: 10.1038/s41588-018-0084-1
pubmed: 29632382
pmcid: 5898373
Ingvorsen C, Karp NA, Lelliott CJ (2017) The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr Diabetes 7(4):e261–e267. https://doi.org/10.1038/nutd.2017.6
doi: 10.1038/nutd.2017.6
pubmed: 28394359
pmcid: 5436097
Corbalán-García S, Gómez-Fernández JC (2010) The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. BioFactors 36(1):1–7. https://doi.org/10.1002/biof.68
doi: 10.1002/biof.68
pubmed: 20049899
Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci 5(12):2375–2390. https://doi.org/10.1002/pro.5560051201
doi: 10.1002/pro.5560051201
pubmed: 8976547
pmcid: 2143302
Pouli EA, Karajenc N, Wasmeier C et al (1998) A phogrin–aequorin chimaera to image free Ca2+ in the vicinity of secretory granules. Biochem J 330(3):1399–1404. https://doi.org/10.1042/bj3301399
doi: 10.1042/bj3301399
pubmed: 9494112
pmcid: 1219288
Kubosaki A, Nakamura S, Clark A, Morris JF, Notkins AL (2006) Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2β causes female infertility. Endocrinology 147(2):811–815. https://doi.org/10.1210/en.2005-0638
doi: 10.1210/en.2005-0638
pubmed: 16269463
Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS, Notkins AL (2002) Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes 51(6):1842–1850. https://doi.org/10.2337/diabetes.51.6.1842
doi: 10.2337/diabetes.51.6.1842
pubmed: 12031972
Fontaine DA, Davis DB (2016) Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65(1):25–33. https://doi.org/10.2337/db15-0982
doi: 10.2337/db15-0982
pubmed: 26696638
Wang S, Li Y, Ma C (2016) Synaptotgmin-1 C2B domain interacts simultaneousy with SNAREs and membranes to promote membrane fusion. ELife 5:e14211. https://doi.org/10.7554/eLife.14211
doi: 10.7554/eLife.14211
pubmed: 27083046
pmcid: 4878868