Identification of Fungal Limonene-3-Hydroxylase for Biotechnological Menthol Production.
CYP
P450
biotechnology
fungal enzyme
fungal enzymes
hydroxylation
limonene
menthol
oxidation
terpenes
Journal
Applied and environmental microbiology
ISSN: 1098-5336
Titre abrégé: Appl Environ Microbiol
Pays: United States
ID NLM: 7605801
Informations de publication
Date de publication:
27 04 2021
27 04 2021
Historique:
received:
24
11
2020
accepted:
24
02
2021
pubmed:
28
2
2021
medline:
29
5
2021
entrez:
27
2
2021
Statut:
epublish
Résumé
More than 30,000 tons of menthol are produced every year as a flavor and fragrance compound or as a medical component. So far, only extraction from plant material and chemical synthesis are possible. An alternative approach for menthol production could be a biotechnological-chemical process with ideally only two conversion steps, starting from (+)-limonene, which is a side product of the citrus processing industry. The first step requires a limonene-3-hydroxylase (L3H) activity that specifically catalyzes hydroxylation of limonene at carbon atom 3. Several protein engineering strategies have already attempted to create limonene-3-hydroxylases from bacterial cytochrome P450 monooxygenases (CYPs, or P450s), which can be efficiently expressed in bacterial hosts. However, their regiospecificity is rather low compared to that of the highly selective L3H enzymes from the biosynthetic pathway for menthol in
Identifiants
pubmed: 33637576
pii: AEM.02873-20
doi: 10.1128/AEM.02873-20
pmc: PMC8117750
pii:
doi:
Substances chimiques
Fungal Proteins
0
Menthol
1490-04-6
Cytochrome P-450 Enzyme System
9035-51-2
Limonene
9MC3I34447
limonene-3-hydroxylase
EC 1.14.13.47
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 American Society for Microbiology.
Références
Appl Environ Microbiol. 2014 Aug;80(15):4566-76
pubmed: 24837377
Appl Microbiol Biotechnol. 2017 Mar;101(5):1805-1817
pubmed: 28105487
Naturwissenschaften. 2005 Dec;92(12):562-77
pubmed: 16292524
Biosci Biotechnol Biochem. 2005 Feb;69(2):321-5
pubmed: 15725657
Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645-9
pubmed: 2162051
Arch Biochem Biophys. 1990 Jan;276(1):219-26
pubmed: 2297225
J Am Chem Soc. 2003 Jan 22;125(3):705-14
pubmed: 12526670
Mycologia. 2006 Nov-Dec;98(6):1041-52
pubmed: 17486979
J Nat Prod. 2003 Mar;66(3):337-43
pubmed: 12662089
Sci Rep. 2018 Sep 26;8(1):14396
pubmed: 30258114
Arch Biochem Biophys. 2001 Mar 1;387(1):125-36
pubmed: 11368174
Hum Genomics. 2009 Oct;4(1):59-65
pubmed: 19951895
Adv Biochem Eng Biotechnol. 2015;148:107-39
pubmed: 25636487
Adv Biochem Eng Biotechnol. 2015;148:319-53
pubmed: 25618831
Microb Cell Fact. 2016 Jul 25;15(1):127
pubmed: 27455954
Appl Microbiol Biotechnol. 2014;98(14):6185-203
pubmed: 24848420
Arch Biochem Biophys. 2000 Jul 1;379(1):127-36
pubmed: 10864450
Plant J. 2004 Jul;39(1):135-45
pubmed: 15200648
Nat Protoc. 2007;2(1):38-41
pubmed: 17401336
Biotechnol J. 2015 Apr;10(4):623-35
pubmed: 25641738
Phytochemistry. 2013 Dec;96:15-25
pubmed: 24054028
Arch Biochem Biophys. 1999 Aug 1;368(1):181-92
pubmed: 10415126
Chembiochem. 2009 Mar 23;10(5):853-61
pubmed: 19222039
FEMS Yeast Res. 2004 Nov;5(2):179-89
pubmed: 15489201
Gene. 1990 Nov 30;96(1):23-8
pubmed: 2265755
BMC Genomics. 2014 Jul 01;15:549
pubmed: 24984952
Appl Microbiol Biotechnol. 2020 Feb;104(3):989-999
pubmed: 31858195
Sci Rep. 2019 Feb 6;9(1):1477
pubmed: 30728428
Nat Methods. 2009 May;6(5):343-5
pubmed: 19363495
Nat Protoc. 2007;2(1):1-4
pubmed: 17401330
Biosci Biotechnol Biochem. 2007 Sep;71(9):2105-23
pubmed: 17827683