High complexity of Glutamine synthetase regulation in Methanosarcina mazei: Small protein 26 interacts and enhances glutamine synthetase activity.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
09 2021
Historique:
revised: 05 01 2021
received: 18 09 2020
accepted: 02 03 2021
pubmed: 5 3 2021
medline: 29 9 2021
entrez: 4 3 2021
Statut: ppublish

Résumé

Small ORF (sORF)-encoded small proteins have been overlooked for a long time due to challenges in prediction and distinguishing between coding- and noncoding-predicted sORFs and in their biochemical detection and characterization. We report on the first biochemical and functional characterization of a small protein (sP26) in the archaeal model organism Methanosarcina mazei, comprising 23 amino acids. The corresponding encoding leaderless mRNA (spRNA26) is highly conserved on nucleotide level as well as on the coded amino acids within numerous Methanosarcina strains strongly arguing for a cellular function of the small protein. spRNA26 level is significantly enhanced under nitrogen limitation, but also under oxygen and salt stress conditions. Using heterologously expressed and purified sP26 in independent biochemical approaches [pull-down by affinity chromatography followed by MS analysis, reverse pull-down, microscale thermophoresis, size-exclusion chromatography, and nuclear magnetic resonance spectroscopy (NMR) analysis], we observed that sP26 interacts and forms complexes with M. mazei glutamine synthetase (GlnA

Identifiants

pubmed: 33660383
doi: 10.1111/febs.15799
doi:

Substances chimiques

Amino Acids 0
Archaeal Proteins 0
RNA, Messenger 0
Glutamate-Ammonia Ligase EC 6.3.1.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5350-5373

Informations de copyright

© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Hobbs EC, Yin X, Paul BJ, Astarita JL & Storz G (2012) Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci USA 109, 16696-16701.
Orr MW, Mao Y, Storz G & Qian SB (2020) Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 48, 1029-1042.
Ramamurthi KS & Storz G (2014) The small protein floodgates are opening; now the functional analysis begins. BMC Biol 12, 96.
Basrai MA, Hieter P & Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7, 768-771.
Miravet-Verde S, Ferrar T, Espadas-Garcia G, Mazzolini R, Gharrab A, Sabido E, Serrano L & Lluch-Senar M (2019) Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 15, e8290.
Cardon T, Herve F, Delcourt V, Roucou X, Salzet M, Franck J & Fournier I (2020) Optimized sample preparation workflow for improved identification of ghost proteins. Anal Chem 92, 1122-1129.
Cassidy L, Kaulich PT & Tholey A (2019) Depletion of high-molecular-mass proteins for the identification of small proteins and short open reading frame encoded peptides in cellular proteomes. J Proteome Res 18, 1725-1734.
Cassidy L, Prasse D, Linke D, Schmitz RA & Tholey A (2016) Combination of bottom-up 2D-LC-MS and semi-top-down GelFree-LC-MS enhances coverage of proteome and low molecular weight short open reading frame encoded peptides of the Archaeon Methanosarcina mazei. J Proteome Res. 15, 3773-3783.
Chu Q, Ma J & Saghatelian A (2015) Identification and characterization of sORF-encoded polypeptides. Crit Rev Biochem Mol Biol 50, 134-141.
Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15, 205-213.
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M & Norel F (2017) Proteome remodelling by the stress sigma factor RpoS/sigma(S) in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 7, 2127.
Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J, Budnik BA, Kellis M & Saghatelian A (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res 13, 1757-1765.
Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, Firth AE, Margus T, Kefi A, Vazquez-Laslop N & Mankin AS (2019) Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol Cell 74, 481-493.e6
Saghatelian A & Couso JP (2015) Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 11, 909-916.
Weaver J, Mohammad F, Buskirk AR & Storz G (2019) Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10, e02819-18.
Duval M & Cossart P (2017) Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 39, 81-88.
Storz G, Wolf YI & Ramamurthi KS (2014) Small proteins can no longer be ignored. Annu Rev Biochem 83, 753-777.
Jevtic Z, Stoll B, Pfeiffer F, Sharma K, Urlaub H, Marchfelder A & Lenz C (2019) The Response of Haloferax volcanii to salt and temperature stress: a proteome study by label-free mass spectrometry. Proteomics 19, e1800491.
Kaulich PT, Cassidy L, Weidenbach K, Schmitz RA & Tholey A (2020) Complementarity of different SDS-PAGE gel staining methods for the identification of short open reading frame-encoded peptides. Proteomics 20, 2000084.
Kubatova N, Jonker HRA, Saxena K, Richter C, Vogel V, Schreiber S, Marchfelder A & Schwalbe H (2020) Solution structure and dynamics of the small protein HVO_2922 from Haloferax volcanii. ChemBioChem 21, 149-156.
Kubatova N, Pyper DJ, Jonker HRA, Saxena K, Remmel L, Richter C, Brantl S, Evguenieva-Hackenberg E, Hess WR, Klug G et al. (2019) Rapid biophysical characterization and nmr spectroscopy structural analysis of small proteins from bacteria and archaea. ChemBioChem 21, 1178-1187.
Nagel C, Machulla A, Zahn S & Soppa J (2019) Several one-domain zinc finger micro-proteins of Haloferax Volcanii are important for stress adaptation, biofilm formation, and swarming. Genes 10, 361.
Prasse D, Thomsen J, De Santis R, Muntel J, Becher D & Schmitz RA (2015) First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Go1. Biochimie 117, 138-148.
Zahn S, Kubatova N, Pyper DJ, Cassidy L, Saxena K, Tholey A, Schwalbe H & Soppa J (2020) Biological functions, genetic and biochemical characterization, and NMR structure determination of the small zinc finger protein HVO_2753 from Haloferax volcanii. FEBS J 288, 2042-2062.
Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23, 13-38.
Buddeweg A, Sharma K, Urlaub H & Schmitz RA (2018) sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Go1. Mol Microbiol 107, 595-609.
Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J & Schmitz RA (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA 106, 21878-21882.
Prasse D, Forstner KU, Jager D, Backofen R & Schmitz RA (2017) sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Go1. RNA Biol 14, 1544-1558.
Weidenbach K, Ehlers C, Kock J, Ehrenreich A & Schmitz RA (2008) Insights into the NrpR regulon in Methanosarcina mazei Go1. Arch Microbiol 190, 319-332.
Weidenbach K, Ehlers C, Kock J & Schmitz RA (2010) NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Go1. FEBS J 277, 4398-4411.
Weidenbach K, Ehlers C & Schmitz RA (2014) The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Go1 under nitrogen-limited conditions. FEBS J 281, 3507-3522.
Ehlers C, Weidenbach K, Veit K, Forchhammer K & Schmitz RA (2005) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Go1 in response to nitrogen availability. Mol Microbiol 55, 1841-1854.
Dar D, Prasse D, Schmitz RA & Sorek R (2016) Widespread formation of alternative 3' UTR isoforms via transcription termination in archaea. Nat Microbiol 1, 16143.
Leigh JA & Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61, 349-377.
Brown JR, Masuchi Y, Robb FT & Doolittle WF (1994) Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 38, 566-576.
Shapiro BM & Stadtman ER (1970) [130] Glutamine synthetase (Escherichia coli). In Methods in Enzymology, pp. 910-922. New York, NY, Academic Press.
Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57, 155-176.
Reitzer L & Schneider BL (2001) Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65, 422-444, table of contents.
Cohen-Kupiec R, Marx CJ & Leigh JA (1999) Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 181, 256-261.
Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K et al. (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179, 7135-7155.
Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C et al. (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4, 453-461.
Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28, 319-333.
Irmler A, Sanner S, Dierks H & Forchhammer K (1997) Dephosphorylation of the phosphoprotein P(II) in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate-regulated phosphatase activity. Mol Microbiol 26, 81-90.
Dodsworth JA & Leigh JA (2007) NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein. Biochem Biophys Res Commun 364, 378-382.
Dodsworth JA & Leigh JA (2006) Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci USA 103, 9779-9784.
Garcia-Dominguez M, Reyes JC & Florencio FJ (1999) Glutamine synthetase inactivation by protein-protein interaction. Proc Natl Acad Sci USA 96, 7161-7166.
Garcia-Dominguez M, Reyes JC & Florencio FJ (2000) NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol 35, 1192-1201.
Klahn S, Schaal C, Georg J, Baumgartner D, Knippen G, Hagemann M, Muro-Pastor AM & Hess WR (2015) The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7. Proc Natl Acad Sci USA 112, E6243-E6252.
Klahn S, Bolay P, Wright PR, Atilho RM, Brewer KI, Hagemann M, Breaker RR & Hess WR (2018) A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 46, 10082-10094.
Gernhardt P, Possot O, Foglino M, Sibold L & Klein A (1990) Construction of an integration vector for use in the archaebacterium Methanococcus voltae and expression of a eubacterial resistance gene. Mol Gen Genet 221, 273-279.
Metcalf WW, Zhang JK, Apolinario E, Sowers KR & Wolfe RS (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94, 2626-2631.
Inoue H, Nojima H & Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28.
Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW & Schmitz RA (2005) Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Go1. Mol Genet Genomics 273, 290-298.
Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP, Deppenmeier U & Schmitz RA (2006) Global transcriptional analysis of Methanosarcina mazei strain Go1 under different nitrogen availabilities. Mol Genet Genomics 276, 41-55.
Nickel L, Weidenbach K, Jager D, Backofen R, Lange SJ, Heidrich N & Schmitz RA (2013) Two CRISPR-Cas systems in Methanosarcina mazei strain Go1 display common processing features despite belonging to different types I and III. RNA Biol 10, 779-791.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1, 16-22.
Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58, 62-87.

Auteurs

Miriam Gutt (M)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Britta Jordan (B)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Katrin Weidenbach (K)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Mirja Gudzuhn (M)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Claudia Kiessling (C)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Liam Cassidy (L)

AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany.

Andreas Helbig (A)

AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany.

Andreas Tholey (A)

AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany.

Dennis Joshua Pyper (DJ)

Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Nina Kubatova (N)

Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Harald Schwalbe (H)

Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Ruth Anne Schmitz (RA)

Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Animals Active Transport, Cell Nucleus RNA, Messenger Humans SARS-CoV-2

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans

Classifications MeSH