Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly.
Dihydroorotate Dehydrogenase
Electron Transport
/ genetics
Electron Transport Complex III
/ genetics
Electron Transport Complex IV
/ genetics
High-Throughput Nucleotide Sequencing
Humans
Lipids
/ biosynthesis
Metabolomics
Mitochondria
/ metabolism
Molecular Structure
Nucleotides
/ chemistry
Oxidoreductases Acting on CH-CH Group Donors
/ chemistry
Oxygen Consumption
Peroxisomes
/ chemistry
Phospholipid Ethers
Phospholipids
/ chemistry
Uridine
/ metabolism
Journal
Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
30
11
2020
accepted:
11
02
2021
pubmed:
17
3
2021
medline:
24
8
2021
entrez:
16
3
2021
Statut:
ppublish
Résumé
The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III
Identifiants
pubmed: 33723432
doi: 10.1038/s41589-021-00772-z
pii: 10.1038/s41589-021-00772-z
pmc: PMC8159895
mid: NIHMS1673285
doi:
Substances chimiques
Dihydroorotate Dehydrogenase
0
Lipids
0
Nucleotides
0
Phospholipid Ethers
0
Phospholipids
0
Oxidoreductases Acting on CH-CH Group Donors
EC 1.3.-
Electron Transport Complex IV
EC 1.9.3.1
Electron Transport Complex III
EC 7.1.1.8
Uridine
WHI7HQ7H85
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
703-710Subventions
Organisme : NIGMS NIH HHS
ID : F32 GM125243
Pays : United States
Organisme : NIDCR NIH HHS
ID : F30 DE028206
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK081418
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121452
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM067945
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK089883
Pays : United States
Références
Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).
pubmed: 13771349
doi: 10.1038/191144a0
Schagger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000).
pubmed: 10775262
pmcid: 302020
doi: 10.1093/emboj/19.8.1777
Schagger, H. & Pfeiffer, K. The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276, 37861–37867 (2001).
pubmed: 11483615
doi: 10.1074/jbc.M106474200
Letts, J. A., Fiedorczuk, K. & Sazanov, L. A. The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016).
pubmed: 27654913
doi: 10.1038/nature19774
Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).
pubmed: 27654917
doi: 10.1038/nature19359
Sousa, J. S., Mills, D. J., Vonck, J. & Kuhlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. Elife 5, https://doi.org/10.7554/eLife.21290 (2016).
Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I
pubmed: 27912063
doi: 10.1016/j.cell.2016.11.012
Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I
pubmed: 28844695
doi: 10.1016/j.cell.2017.07.050
Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).
pubmed: 19026783
doi: 10.1016/j.molcel.2008.10.021
Shinzawa-Itoh, K. et al. Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J. Biol. Chem. 291, 4178–4184 (2016).
pubmed: 26698328
doi: 10.1074/jbc.M115.680553
Calvo, E. et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q
pubmed: 32637615
pmcid: 7314541
doi: 10.1126/sciadv.aba7509
Garcia-Poyatos, C. et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Rep. 21, e50287 (2020).
pubmed: 32496654
pmcid: 7332985
doi: 10.15252/embr.202050287
Berndtsson, J. et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep. 21, https://doi.org/10.15252/embr.202051015 (2020).
Chen, Y. C. et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metab. 15, 348–360 (2012).
pubmed: 22405070
pmcid: 3302151
doi: 10.1016/j.cmet.2012.02.006
Hatle, K. M. et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell Biol. 33, 2302–2314 (2013).
pubmed: 23530063
pmcid: 3648061
doi: 10.1128/MCB.00189-13
Desmurs, M. et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol. Cell Biol. 35, 1139–1156 (2015).
pubmed: 25605331
pmcid: 4355537
doi: 10.1128/MCB.01047-14
Mitsopoulos, P. et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell Biol. 35, 1838–1847 (2015).
pubmed: 25776552
pmcid: 4405640
doi: 10.1128/MCB.00047-15
Nagano, H. et al. p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc. Natl Acad. Sci. USA 115, 8370–8375 (2018).
pubmed: 30061407
pmcid: 6099896
doi: 10.1073/pnas.1804243115
Ikeda, K., Shiba, S., Horie-Inoue, K., Shimokata, K. & Inoue, S. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat. Commun. 4, 2147 (2013).
pubmed: 23857330
doi: 10.1038/ncomms3147
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
pubmed: 23812712
doi: 10.1126/science.1230381
Milenkovic, D., Blaza, J. N., Larsson, N. G. & Hirst, J. The enigma of the respiratory chain supercomplex. Cell Metab. 25, 765–776 (2017).
pubmed: 28380371
doi: 10.1016/j.cmet.2017.03.009
Cogliati, S. et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579–582 (2016).
pubmed: 27775717
doi: 10.1038/nature20157
Mourier, A., Matic, S., Ruzzenente, B., Larsson, N. G. & Milenkovic, D. The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab. 20, 1069–1075 (2014).
pubmed: 25470551
pmcid: 4261080
doi: 10.1016/j.cmet.2014.11.005
Perez-Perez, R. et al. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III
pubmed: 27545886
pmcid: 5007171
doi: 10.1016/j.celrep.2016.07.081
Pfeiffer, K. et al. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278, 52873–52880 (2003).
pubmed: 14561769
doi: 10.1074/jbc.M308366200
Bottinger, L. et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 423, 677–686 (2012).
pubmed: 22971339
doi: 10.1016/j.jmb.2012.09.001
Das, S. et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 21, 868–876 (2015).
pubmed: 26039450
doi: 10.1016/j.cmet.2015.05.006
Baker, C. D., Basu Ball, W., Pryce, E. N. & Gohil, V. M. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol. Biol. Cell 27, 2161–2171 (2016).
pubmed: 27226479
pmcid: 4945136
doi: 10.1091/mbc.E15-12-0865
Tasseva, G. et al. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288, 4158–4173 (2013).
pubmed: 23250747
doi: 10.1074/jbc.M112.434183
Basu Ball, W., Neff, J. K. & Gohil, V. M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 592, 1273–1290 (2018).
pubmed: 29067684
doi: 10.1002/1873-3468.12887
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
pubmed: 26569370
doi: 10.1021/acschembio.5b00753
Ohashi, K., Kiuchi, T., Shoji, K., Sampei, K. & Mizuno, K. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques 52, 45–50 (2012).
pubmed: 22229727
doi: 10.2144/000113777
Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).
pubmed: 31023583
pmcid: 6555668
doi: 10.1016/j.molcel.2019.03.031
Madak, J. T., Bankhead, A. 3rd, Cuthbertson, C. R., Showalter, H. D. & Neamati, N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol. Ther. 195, 111–131 (2019).
pubmed: 30347213
doi: 10.1016/j.pharmthera.2018.10.012
Schlame, M. & Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580, 5450–5455 (2006).
pubmed: 16973164
doi: 10.1016/j.febslet.2006.07.022
McKenzie, M., Lazarou, M., Thorburn, D. R. & Ryan, M. T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 361, 462–469 (2006).
pubmed: 16857210
doi: 10.1016/j.jmb.2006.06.057
Dudek, J. et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 11, 806–819 (2013).
pubmed: 23792436
doi: 10.1016/j.scr.2013.05.005
Breitkopf, S. B. et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, https://doi.org/10.1007/s11306-016-1157-8 (2017).
Braverman, N. E. & Moser, A. B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822, 1442–1452 (2012).
pubmed: 22627108
doi: 10.1016/j.bbadis.2012.05.008
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433
doi: 10.1007/s13238-017-0423-5
Honsho, M., Asaoku, S. & Fujiki, Y. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J. Biol. Chem. 285, 8537–8542 (2010).
pubmed: 20071337
pmcid: 2838275
doi: 10.1074/jbc.M109.083311
Kimura, T. et al. Substantial decrease in plasmalogen in the heart associated with tafazzin deficiency. Biochemistry 57, 2162–2175 (2018).
pubmed: 29557170
doi: 10.1021/acs.biochem.8b00042
Letts, J. A. & Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800–808 (2017).
pubmed: 28981073
doi: 10.1038/nsmb.3460
Horibata, Y. et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J. Lipid Res. 59, 1015–1026 (2018).
pubmed: 29500230
pmcid: 5983406
doi: 10.1194/jlr.P081620
Kimura, T. et al. Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Sci. Alliance 2, e201900348 (2019).
pubmed: 31434794
pmcid: 6707388
doi: 10.26508/lsa.201900348
Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).
pubmed: 27916530
doi: 10.1016/j.cmet.2016.11.004
Hollinshead, K. E. R. et al. Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep. 33, 108231 (2020).
pubmed: 33027658
pmcid: 7573785
doi: 10.1016/j.celrep.2020.108231
Ikeda, K. et al. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat. Commun. 10, 4108 (2019).
pubmed: 31511525
pmcid: 6739376
doi: 10.1038/s41467-019-12124-6
Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727.e11 (2020).
pubmed: 32259488
pmcid: 7293541
doi: 10.1016/j.cell.2020.03.029
Benjamin, D. I. et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl Acad. Sci. USA 110, 14912–14917 (2013).
pubmed: 23980144
pmcid: 3773741
doi: 10.1073/pnas.1310894110
Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).
pubmed: 32939090
pmcid: 8051864
doi: 10.1038/s41586-020-2732-8
Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
pubmed: 23371551
pmcid: 3916822
doi: 10.1126/science.1230593
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
pubmed: 24336571
doi: 10.1126/science.1247005
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).
pubmed: 22653162
doi: 10.1038/nprot.2012.058
Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
pubmed: 22498707
pmcid: 3685491
doi: 10.1038/nprot.2012.024
Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019).
pubmed: 30683937
pmcid: 7382369
doi: 10.1038/s41596-018-0102-x
Honsho, M., Yagita, Y., Kinoshita, N. & Fujiki, Y. Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: localization and transport of plasmalogens to post-Golgi compartments. Biochim. Biophys. Acta 1783, 1857–1865 (2008).
pubmed: 18571506
doi: 10.1016/j.bbamcr.2008.05.018
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409
pmcid: 5709193
doi: 10.1038/ng.3984
Dempster, J. M. et al. Extracting biological insights from the project achilles genome-scale CRISPR screens in cancer cell lines. Preprint at bioRxiv https://doi.org/10.1101/720243 (2019).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019