Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
06 2021
Historique:
received: 30 11 2020
accepted: 11 02 2021
pubmed: 17 3 2021
medline: 24 8 2021
entrez: 16 3 2021
Statut: ppublish

Résumé

The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III

Identifiants

pubmed: 33723432
doi: 10.1038/s41589-021-00772-z
pii: 10.1038/s41589-021-00772-z
pmc: PMC8159895
mid: NIHMS1673285
doi:

Substances chimiques

Dihydroorotate Dehydrogenase 0
Lipids 0
Nucleotides 0
Phospholipid Ethers 0
Phospholipids 0
Oxidoreductases Acting on CH-CH Group Donors EC 1.3.-
Electron Transport Complex IV EC 1.9.3.1
Electron Transport Complex III EC 7.1.1.8
Uridine WHI7HQ7H85

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

703-710

Subventions

Organisme : NIGMS NIH HHS
ID : F32 GM125243
Pays : United States
Organisme : NIDCR NIH HHS
ID : F30 DE028206
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK081418
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121452
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM067945
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK089883
Pays : United States

Références

Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).
pubmed: 13771349 doi: 10.1038/191144a0
Schagger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, 1777–1783 (2000).
pubmed: 10775262 pmcid: 302020 doi: 10.1093/emboj/19.8.1777
Schagger, H. & Pfeiffer, K. The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276, 37861–37867 (2001).
pubmed: 11483615 doi: 10.1074/jbc.M106474200
Letts, J. A., Fiedorczuk, K. & Sazanov, L. A. The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016).
pubmed: 27654913 doi: 10.1038/nature19774
Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).
pubmed: 27654917 doi: 10.1038/nature19359
Sousa, J. S., Mills, D. J., Vonck, J. & Kuhlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. Elife 5, https://doi.org/10.7554/eLife.21290 (2016).
Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I
pubmed: 27912063 doi: 10.1016/j.cell.2016.11.012
Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I
pubmed: 28844695 doi: 10.1016/j.cell.2017.07.050
Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).
pubmed: 19026783 doi: 10.1016/j.molcel.2008.10.021
Shinzawa-Itoh, K. et al. Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J. Biol. Chem. 291, 4178–4184 (2016).
pubmed: 26698328 doi: 10.1074/jbc.M115.680553
Calvo, E. et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q
pubmed: 32637615 pmcid: 7314541 doi: 10.1126/sciadv.aba7509
Garcia-Poyatos, C. et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Rep. 21, e50287 (2020).
pubmed: 32496654 pmcid: 7332985 doi: 10.15252/embr.202050287
Berndtsson, J. et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep. 21, https://doi.org/10.15252/embr.202051015 (2020).
Chen, Y. C. et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metab. 15, 348–360 (2012).
pubmed: 22405070 pmcid: 3302151 doi: 10.1016/j.cmet.2012.02.006
Hatle, K. M. et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell Biol. 33, 2302–2314 (2013).
pubmed: 23530063 pmcid: 3648061 doi: 10.1128/MCB.00189-13
Desmurs, M. et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol. Cell Biol. 35, 1139–1156 (2015).
pubmed: 25605331 pmcid: 4355537 doi: 10.1128/MCB.01047-14
Mitsopoulos, P. et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell Biol. 35, 1838–1847 (2015).
pubmed: 25776552 pmcid: 4405640 doi: 10.1128/MCB.00047-15
Nagano, H. et al. p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc. Natl Acad. Sci. USA 115, 8370–8375 (2018).
pubmed: 30061407 pmcid: 6099896 doi: 10.1073/pnas.1804243115
Ikeda, K., Shiba, S., Horie-Inoue, K., Shimokata, K. & Inoue, S. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat. Commun. 4, 2147 (2013).
pubmed: 23857330 doi: 10.1038/ncomms3147
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
pubmed: 23812712 doi: 10.1126/science.1230381
Milenkovic, D., Blaza, J. N., Larsson, N. G. & Hirst, J. The enigma of the respiratory chain supercomplex. Cell Metab. 25, 765–776 (2017).
pubmed: 28380371 doi: 10.1016/j.cmet.2017.03.009
Cogliati, S. et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579–582 (2016).
pubmed: 27775717 doi: 10.1038/nature20157
Mourier, A., Matic, S., Ruzzenente, B., Larsson, N. G. & Milenkovic, D. The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab. 20, 1069–1075 (2014).
pubmed: 25470551 pmcid: 4261080 doi: 10.1016/j.cmet.2014.11.005
Perez-Perez, R. et al. COX7A2L is a mitochondrial complex III binding protein that stabilizes the III
pubmed: 27545886 pmcid: 5007171 doi: 10.1016/j.celrep.2016.07.081
Pfeiffer, K. et al. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278, 52873–52880 (2003).
pubmed: 14561769 doi: 10.1074/jbc.M308366200
Bottinger, L. et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 423, 677–686 (2012).
pubmed: 22971339 doi: 10.1016/j.jmb.2012.09.001
Das, S. et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 21, 868–876 (2015).
pubmed: 26039450 doi: 10.1016/j.cmet.2015.05.006
Baker, C. D., Basu Ball, W., Pryce, E. N. & Gohil, V. M. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol. Biol. Cell 27, 2161–2171 (2016).
pubmed: 27226479 pmcid: 4945136 doi: 10.1091/mbc.E15-12-0865
Tasseva, G. et al. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288, 4158–4173 (2013).
pubmed: 23250747 doi: 10.1074/jbc.M112.434183
Basu Ball, W., Neff, J. K. & Gohil, V. M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 592, 1273–1290 (2018).
pubmed: 29067684 doi: 10.1002/1873-3468.12887
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
pubmed: 26569370 doi: 10.1021/acschembio.5b00753
Ohashi, K., Kiuchi, T., Shoji, K., Sampei, K. & Mizuno, K. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques 52, 45–50 (2012).
pubmed: 22229727 doi: 10.2144/000113777
Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).
pubmed: 31023583 pmcid: 6555668 doi: 10.1016/j.molcel.2019.03.031
Madak, J. T., Bankhead, A. 3rd, Cuthbertson, C. R., Showalter, H. D. & Neamati, N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol. Ther. 195, 111–131 (2019).
pubmed: 30347213 doi: 10.1016/j.pharmthera.2018.10.012
Schlame, M. & Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580, 5450–5455 (2006).
pubmed: 16973164 doi: 10.1016/j.febslet.2006.07.022
McKenzie, M., Lazarou, M., Thorburn, D. R. & Ryan, M. T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 361, 462–469 (2006).
pubmed: 16857210 doi: 10.1016/j.jmb.2006.06.057
Dudek, J. et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 11, 806–819 (2013).
pubmed: 23792436 doi: 10.1016/j.scr.2013.05.005
Breitkopf, S. B. et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, https://doi.org/10.1007/s11306-016-1157-8 (2017).
Braverman, N. E. & Moser, A. B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822, 1442–1452 (2012).
pubmed: 22627108 doi: 10.1016/j.bbadis.2012.05.008
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433 doi: 10.1007/s13238-017-0423-5
Honsho, M., Asaoku, S. & Fujiki, Y. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J. Biol. Chem. 285, 8537–8542 (2010).
pubmed: 20071337 pmcid: 2838275 doi: 10.1074/jbc.M109.083311
Kimura, T. et al. Substantial decrease in plasmalogen in the heart associated with tafazzin deficiency. Biochemistry 57, 2162–2175 (2018).
pubmed: 29557170 doi: 10.1021/acs.biochem.8b00042
Letts, J. A. & Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800–808 (2017).
pubmed: 28981073 doi: 10.1038/nsmb.3460
Horibata, Y. et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J. Lipid Res. 59, 1015–1026 (2018).
pubmed: 29500230 pmcid: 5983406 doi: 10.1194/jlr.P081620
Kimura, T. et al. Plasmalogen loss caused by remodeling deficiency in mitochondria. Life Sci. Alliance 2, e201900348 (2019).
pubmed: 31434794 pmcid: 6707388 doi: 10.26508/lsa.201900348
Greggio, C. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301–311 (2017).
pubmed: 27916530 doi: 10.1016/j.cmet.2016.11.004
Hollinshead, K. E. R. et al. Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep. 33, 108231 (2020).
pubmed: 33027658 pmcid: 7573785 doi: 10.1016/j.celrep.2020.108231
Ikeda, K. et al. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat. Commun. 10, 4108 (2019).
pubmed: 31511525 pmcid: 6739376 doi: 10.1038/s41467-019-12124-6
Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727.e11 (2020).
pubmed: 32259488 pmcid: 7293541 doi: 10.1016/j.cell.2020.03.029
Benjamin, D. I. et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl Acad. Sci. USA 110, 14912–14917 (2013).
pubmed: 23980144 pmcid: 3773741 doi: 10.1073/pnas.1310894110
Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).
pubmed: 32939090 pmcid: 8051864 doi: 10.1038/s41586-020-2732-8
Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).
pubmed: 23371551 pmcid: 3916822 doi: 10.1126/science.1230593
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
pubmed: 24336571 doi: 10.1126/science.1247005
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).
pubmed: 22653162 doi: 10.1038/nprot.2012.058
Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
pubmed: 22498707 pmcid: 3685491 doi: 10.1038/nprot.2012.024
Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019).
pubmed: 30683937 pmcid: 7382369 doi: 10.1038/s41596-018-0102-x
Honsho, M., Yagita, Y., Kinoshita, N. & Fujiki, Y. Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: localization and transport of plasmalogens to post-Golgi compartments. Biochim. Biophys. Acta 1783, 1857–1865 (2008).
pubmed: 18571506 doi: 10.1016/j.bbamcr.2008.05.018
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409 pmcid: 5709193 doi: 10.1038/ng.3984
Dempster, J. M. et al. Extracting biological insights from the project achilles genome-scale CRISPR screens in cancer cell lines. Preprint at bioRxiv https://doi.org/10.1101/720243 (2019).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019

Auteurs

Christopher F Bennett (CF)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Katherine E O'Malley (KE)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Elizabeth A Perry (EA)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Eduardo Balsa (E)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Pedro Latorre-Muro (P)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Christopher L Riley (CL)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Chi Luo (C)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Mark Jedrychowski (M)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Steven P Gygi (SP)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Pere Puigserver (P)

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. pere_puigserver@dfci.harvard.edu.
Department of Cell Biology, Harvard Medical School, Boston, MA, USA. pere_puigserver@dfci.harvard.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH