Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway.
Aged
Aging
/ genetics
Animals
Apoptosis
/ genetics
Cell Cycle
/ genetics
Cell Proliferation
/ genetics
Cells, Cultured
Clonal Hematopoiesis
/ genetics
DNA Damage
/ drug effects
Gene Knock-In Techniques
Hematopoiesis
/ genetics
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells
/ drug effects
Humans
Membrane Potential, Mitochondrial
/ drug effects
Mice
Mice, Transgenic
Mutation
Proto-Oncogene Proteins c-akt
/ metabolism
RNA-Seq
Reactive Oxygen Species
/ pharmacology
Repressor Proteins
/ genetics
Signal Transduction
/ drug effects
Sirolimus
/ pharmacology
TOR Serine-Threonine Kinases
/ metabolism
Tumor Suppressor Proteins
/ metabolism
Ubiquitin Thiolesterase
/ metabolism
Ubiquitination
/ drug effects
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 03 2021
23 03 2021
Historique:
received:
05
12
2019
accepted:
23
02
2021
entrez:
24
3
2021
pubmed:
25
3
2021
medline:
15
4
2021
Statut:
epublish
Résumé
Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.
Identifiants
pubmed: 33758188
doi: 10.1038/s41467-021-22053-y
pii: 10.1038/s41467-021-22053-y
pmc: PMC7988019
doi:
Substances chimiques
Asxl1 protein, mouse
0
BAP1 protein, mouse
0
Reactive Oxygen Species
0
Repressor Proteins
0
Tumor Suppressor Proteins
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
TOR Serine-Threonine Kinases
EC 2.7.11.1
Ubiquitin Thiolesterase
EC 3.4.19.12
Sirolimus
W36ZG6FT64
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1826Subventions
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Références
De Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood 131, 479–488 (2018).
pubmed: 29141947
doi: 10.1182/blood-2017-06-746412
Akunuru, S. & Geiger, H. Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol. Med. 22, 701–712 (2016).
pubmed: 27380967
pmcid: 4969095
doi: 10.1016/j.molmed.2016.06.003
Geiger, H., De Haan, G. & Carolina Florian, M. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).
pubmed: 23584423
doi: 10.1038/nri3433
De Haan, G., Nijhof, W. & Zant, G. Van Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997).
pubmed: 9057635
doi: 10.1182/blood.V89.5.1543
Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).
pubmed: 11067876
pmcid: 2193349
doi: 10.1084/jem.192.9.1273
Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).
pubmed: 20304793
doi: 10.1073/pnas.1000834107
pmcid: 2851806
Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).
pubmed: 22110168
pmcid: 3244040
doi: 10.1084/jem.20111490
Bernitz, J. M., Kim, H. S., Macarthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember article hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 (2016).
pubmed: 27839867
pmcid: 5115957
doi: 10.1016/j.cell.2016.10.022
Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607 (2018).
pubmed: 29625072
pmcid: 5896201
doi: 10.1016/j.stem.2018.03.013
Fisher, C. L., Berger, J., Randazzo, F. & Brock, H. W. A human homolog of additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene 306, 115–126 (2003).
pubmed: 12657473
doi: 10.1016/S0378-1119(03)00430-X
Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).
pubmed: 22897849
pmcid: 3422511
doi: 10.1016/j.ccr.2012.06.032
Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).
pubmed: 20436459
pmcid: 3182123
doi: 10.1038/nature08966
Inoue, D. et al. A novel ASXL1–OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia 32, 1327–1337 (2018).
pubmed: 29556021
doi: 10.1038/s41375-018-0083-3
Thol, F. et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J. Clin. Oncol. 29, 2499–2506 (2011).
pubmed: 21576631
doi: 10.1200/JCO.2010.33.4938
Gelsi-Boyer, V. et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br. J. Haematol. 151, 365–375 (2010).
pubmed: 20880116
doi: 10.1111/j.1365-2141.2010.08381.x
Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369, 2391–2405 (2013).
pubmed: 24325359
pmcid: 3966280
doi: 10.1056/NEJMoa1312542
Schnittger, S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27, 82–91 (2013).
pubmed: 23018865
doi: 10.1038/leu.2012.262
Boultwood, J. et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24, 1062–1065 (2010).
pubmed: 20182461
doi: 10.1038/leu.2010.20
Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).
pubmed: 25326804
pmcid: 4313872
doi: 10.1038/nm.3733
Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
pubmed: 25426838
pmcid: 4290021
doi: 10.1056/NEJMoa1409405
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
pubmed: 25426837
pmcid: 4306669
doi: 10.1056/NEJMoa1408617
Inoue, D. et al. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp. Hematol. 44, 172–176 (2016).
pubmed: 26700326
doi: 10.1016/j.exphem.2015.11.011
Asada, S. et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat. Commun. 9, 1–18 (2018).
doi: 10.1038/s41467-018-05085-9
Balasubramani, A. et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat. Commun. 6, 1–15 (2015).
doi: 10.1038/ncomms8307
Nagase, R. et al. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J. Exp. Med. 215, 1729–1747 (2018).
pubmed: 29643185
pmcid: 5987913
doi: 10.1084/jem.20171151
Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).
pubmed: 29395053
pmcid: 5804896
doi: 10.1016/j.stem.2018.01.011
Shlush, L. I. Age-related clonal hematopoiesis. Blood 131, 496–504 (2018).
pubmed: 29141946
doi: 10.1182/blood-2017-07-746453
Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).
pubmed: 27834397
doi: 10.1038/nrc.2016.112
Ferrando, A. A. & López-Otín, C. Clonal evolution in leukemia. Nat. Med. 23, 1135–1145 (2017).
pubmed: 28985206
doi: 10.1038/nm.4410
Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).
pubmed: 21723201
doi: 10.1016/j.ccr.2011.06.003
Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).
pubmed: 21723200
pmcid: 3194039
doi: 10.1016/j.ccr.2011.06.001
Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2012).
doi: 10.1038/ng.1009
Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).
pubmed: 25130491
pmcid: 4163922
doi: 10.1016/j.stem.2014.06.018
Uni, M. et al. Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modi fi cation. Leukemia 191–204 (2018) https://doi.org/10.1038/s41375-018-0198-6
Hsu, Y. C. et al. The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J. Hematol. Oncol. 10, 1–15 (2017).
doi: 10.1186/s13045-017-0508-x
Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).
pubmed: 23564910
doi: 10.1182/blood-2012-09-457929
Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).
pubmed: 23993099
doi: 10.1016/j.cell.2013.08.007
Bae, S. et al. Akt is negatively regulated by the MULAN E3 ligase. Cell Res. 22, 873–885 (2012).
pubmed: 22410793
pmcid: 3343661
doi: 10.1038/cr.2012.38
Dickey, C. A. et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl Acad. Sci. USA 105, 3622–3627 (2008).
pubmed: 18292230
doi: 10.1073/pnas.0709180105
pmcid: 2265134
Fan, C. D., Lum, M. A., Xu, C., Black, J. D. & Wang, X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 LIGASE, NEDD4-1, in the insulin-like growth factor-1 response. J. Biol. Chem. 288, 1674–1684 (2013).
pubmed: 23195959
doi: 10.1074/jbc.M112.416339
Suizu, F. et al. The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev. Cell 17, 800–810 (2009).
pubmed: 20059950
doi: 10.1016/j.devcel.2009.09.007
Xiang, T. et al. Negative regulation of AKT activation by BRCA1. Cancer Res. 68, 10040–10044 (2008).
pubmed: 19074868
pmcid: 2605656
doi: 10.1158/0008-5472.CAN-08-3009
Wang, J. et al. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways research articles. J. Proteome Res. 7, 3879–3889 (2008).
pubmed: 18624398
doi: 10.1021/pr8001645
Youn, H. S. et al. Asxl1 deficiency in embryonic fibroblasts leads to cellular senescence via impairment of the AKT-E2F pathway and Ezh2 inactivation. Sci. Rep. 7, 1–13 (2017).
doi: 10.1038/s41598-017-05564-x
Inoue, D. et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia 29, 847–857 (2015).
pubmed: 25306901
doi: 10.1038/leu.2014.301
Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).
pubmed: 18809716
pmcid: 2556783
doi: 10.1084/jem.20081297
Luchsinger, L. L., De Almeida, M. J., Corrigan, D. J., Mumau, M. & Snoeck, H. W. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528–531 (2016).
pubmed: 26789249
pmcid: 5106870
doi: 10.1038/nature16500
Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).
pubmed: 23290137
pmcid: 3632072
doi: 10.1016/j.stem.2012.11.022
Archer, S. L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013).
pubmed: 24304053
doi: 10.1056/NEJMra1215233
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).
pubmed: 21102612
doi: 10.1038/nrm3013
Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2951 (2015).
doi: 10.1182/blood-2011-01-330050
Douglas, C. W. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).
doi: 10.1038/nrc3365
Abbas, H. A. et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7, 606–617 (2010).
pubmed: 21040902
pmcid: 3026610
doi: 10.1016/j.stem.2010.09.013
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).
pubmed: 16286925
pmcid: 2637821
doi: 10.1038/nm1320
Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2007).
pubmed: 17032926
pmcid: 1794064
doi: 10.1182/blood-2006-03-010413
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 450, 736–740 (2007).
doi: 10.1038/nature06322
pubmed: 18046414
Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).
pubmed: 15851026
doi: 10.1016/j.cell.2005.02.031
Yilmaz, Ö. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).
pubmed: 16598206
doi: 10.1038/nature04703
Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).
pubmed: 16633340
doi: 10.1038/nature04747
Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).
pubmed: 28614305
pmcid: 5581194
doi: 10.1038/nature22798
Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A. & Dutta, A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J. Biol. Chem. 284, 34179–34188 (2009).
pubmed: 19815555
pmcid: 2797188
doi: 10.1074/jbc.M109.046755
Misaghi, S. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol. Cell. Biol. 29, 2181–2192 (2009).
pubmed: 19188440
pmcid: 2663315
doi: 10.1128/MCB.01517-08
Qin, J. et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat. Commun. 6, 8471 (2015).
pubmed: 26419610
doi: 10.1038/ncomms9471
Ruan, H. Bin et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 16, 226–237 (2012).
pubmed: 22883232
pmcid: 3480732
doi: 10.1016/j.cmet.2012.07.006
Cao, L. et al. Deregulation of tumor suppressive ASXL1–PTEN/AKT axis in myeloid malignancies. J. Mol. Cell Biol. 12, 688–699 (2020).
pubmed: 32236560
pmcid: 7749738
doi: 10.1093/jmcb/mjaa011
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).
pubmed: 28636844
pmcid: 6717509
doi: 10.1056/NEJMoa1701719
Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science (80-.). 364, eaaw0726 (2019).
doi: 10.1126/science.aaw0726
Tamura, M. et al. Opposing effects of acute versus chronic inhibition of p53 on decitabine’s efficacy in myeloid neoplasms. Sci. Rep. 9, 4–6 (2019).
doi: 10.1038/s41598-019-44496-6
Rehman, J. et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26, 2175–2186 (2012).
pubmed: 22321727
pmcid: 3336787
doi: 10.1096/fj.11-196543
Senyilmaz, D. et al. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525, 124–128 (2015).
pubmed: 26214738
pmcid: 4561519
doi: 10.1038/nature14601
Kunisawa, J. et al. Mode of bioenergetic metabolism during B cell differentiation in the intestine determines the distinct requirement for vitamin B1. Cell Rep. 13, 122–131 (2015).
pubmed: 26411688
doi: 10.1016/j.celrep.2015.08.063
Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).
pubmed: 29058703
doi: 10.1038/ni.3867
Dobin, A. & Gingeras, T. R. “TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
doi: 10.1186/gb-2013-14-4-r36
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
pubmed: 22383036
pmcid: 3334321
doi: 10.1038/nprot.2012.016
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
pubmed: 20436464
pmcid: 3146043
doi: 10.1038/nbt.1621