Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 03 2021
Historique:
received: 05 12 2019
accepted: 23 02 2021
entrez: 24 3 2021
pubmed: 25 3 2021
medline: 15 4 2021
Statut: epublish

Résumé

Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.

Identifiants

pubmed: 33758188
doi: 10.1038/s41467-021-22053-y
pii: 10.1038/s41467-021-22053-y
pmc: PMC7988019
doi:

Substances chimiques

Asxl1 protein, mouse 0
BAP1 protein, mouse 0
Reactive Oxygen Species 0
Repressor Proteins 0
Tumor Suppressor Proteins 0
Proto-Oncogene Proteins c-akt EC 2.7.11.1
TOR Serine-Threonine Kinases EC 2.7.11.1
Ubiquitin Thiolesterase EC 3.4.19.12
Sirolimus W36ZG6FT64

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1826

Subventions

Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States

Références

De Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood 131, 479–488 (2018).
pubmed: 29141947 doi: 10.1182/blood-2017-06-746412
Akunuru, S. & Geiger, H. Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol. Med. 22, 701–712 (2016).
pubmed: 27380967 pmcid: 4969095 doi: 10.1016/j.molmed.2016.06.003
Geiger, H., De Haan, G. & Carolina Florian, M. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).
pubmed: 23584423 doi: 10.1038/nri3433
De Haan, G., Nijhof, W. & Zant, G. Van Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997).
pubmed: 9057635 doi: 10.1182/blood.V89.5.1543
Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).
pubmed: 11067876 pmcid: 2193349 doi: 10.1084/jem.192.9.1273
Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).
pubmed: 20304793 doi: 10.1073/pnas.1000834107 pmcid: 2851806
Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).
pubmed: 22110168 pmcid: 3244040 doi: 10.1084/jem.20111490
Bernitz, J. M., Kim, H. S., Macarthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember article hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 (2016).
pubmed: 27839867 pmcid: 5115957 doi: 10.1016/j.cell.2016.10.022
Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607 (2018).
pubmed: 29625072 pmcid: 5896201 doi: 10.1016/j.stem.2018.03.013
Fisher, C. L., Berger, J., Randazzo, F. & Brock, H. W. A human homolog of additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene 306, 115–126 (2003).
pubmed: 12657473 doi: 10.1016/S0378-1119(03)00430-X
Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).
pubmed: 22897849 pmcid: 3422511 doi: 10.1016/j.ccr.2012.06.032
Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).
pubmed: 20436459 pmcid: 3182123 doi: 10.1038/nature08966
Inoue, D. et al. A novel ASXL1–OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia 32, 1327–1337 (2018).
pubmed: 29556021 doi: 10.1038/s41375-018-0083-3
Thol, F. et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J. Clin. Oncol. 29, 2499–2506 (2011).
pubmed: 21576631 doi: 10.1200/JCO.2010.33.4938
Gelsi-Boyer, V. et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br. J. Haematol. 151, 365–375 (2010).
pubmed: 20880116 doi: 10.1111/j.1365-2141.2010.08381.x
Nangalia, J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369, 2391–2405 (2013).
pubmed: 24325359 pmcid: 3966280 doi: 10.1056/NEJMoa1312542
Schnittger, S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27, 82–91 (2013).
pubmed: 23018865 doi: 10.1038/leu.2012.262
Boultwood, J. et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24, 1062–1065 (2010).
pubmed: 20182461 doi: 10.1038/leu.2010.20
Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).
pubmed: 25326804 pmcid: 4313872 doi: 10.1038/nm.3733
Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
pubmed: 25426838 pmcid: 4290021 doi: 10.1056/NEJMoa1409405
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
pubmed: 25426837 pmcid: 4306669 doi: 10.1056/NEJMoa1408617
Inoue, D. et al. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp. Hematol. 44, 172–176 (2016).
pubmed: 26700326 doi: 10.1016/j.exphem.2015.11.011
Asada, S. et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat. Commun. 9, 1–18 (2018).
doi: 10.1038/s41467-018-05085-9
Balasubramani, A. et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat. Commun. 6, 1–15 (2015).
doi: 10.1038/ncomms8307
Nagase, R. et al. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J. Exp. Med. 215, 1729–1747 (2018).
pubmed: 29643185 pmcid: 5987913 doi: 10.1084/jem.20171151
Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).
pubmed: 29395053 pmcid: 5804896 doi: 10.1016/j.stem.2018.01.011
Shlush, L. I. Age-related clonal hematopoiesis. Blood 131, 496–504 (2018).
pubmed: 29141946 doi: 10.1182/blood-2017-07-746453
Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).
pubmed: 27834397 doi: 10.1038/nrc.2016.112
Ferrando, A. A. & López-Otín, C. Clonal evolution in leukemia. Nat. Med. 23, 1135–1145 (2017).
pubmed: 28985206 doi: 10.1038/nm.4410
Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).
pubmed: 21723201 doi: 10.1016/j.ccr.2011.06.003
Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).
pubmed: 21723200 pmcid: 3194039 doi: 10.1016/j.ccr.2011.06.001
Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2012).
doi: 10.1038/ng.1009
Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).
pubmed: 25130491 pmcid: 4163922 doi: 10.1016/j.stem.2014.06.018
Uni, M. et al. Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modi fi cation. Leukemia 191–204 (2018) https://doi.org/10.1038/s41375-018-0198-6
Hsu, Y. C. et al. The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J. Hematol. Oncol. 10, 1–15 (2017).
doi: 10.1186/s13045-017-0508-x
Gekas, C. & Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121, 4463–4472 (2013).
pubmed: 23564910 doi: 10.1182/blood-2012-09-457929
Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).
pubmed: 23993099 doi: 10.1016/j.cell.2013.08.007
Bae, S. et al. Akt is negatively regulated by the MULAN E3 ligase. Cell Res. 22, 873–885 (2012).
pubmed: 22410793 pmcid: 3343661 doi: 10.1038/cr.2012.38
Dickey, C. A. et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl Acad. Sci. USA 105, 3622–3627 (2008).
pubmed: 18292230 doi: 10.1073/pnas.0709180105 pmcid: 2265134
Fan, C. D., Lum, M. A., Xu, C., Black, J. D. & Wang, X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 LIGASE, NEDD4-1, in the insulin-like growth factor-1 response. J. Biol. Chem. 288, 1674–1684 (2013).
pubmed: 23195959 doi: 10.1074/jbc.M112.416339
Suizu, F. et al. The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev. Cell 17, 800–810 (2009).
pubmed: 20059950 doi: 10.1016/j.devcel.2009.09.007
Xiang, T. et al. Negative regulation of AKT activation by BRCA1. Cancer Res. 68, 10040–10044 (2008).
pubmed: 19074868 pmcid: 2605656 doi: 10.1158/0008-5472.CAN-08-3009
Wang, J. et al. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways research articles. J. Proteome Res. 7, 3879–3889 (2008).
pubmed: 18624398 doi: 10.1021/pr8001645
Youn, H. S. et al. Asxl1 deficiency in embryonic fibroblasts leads to cellular senescence via impairment of the AKT-E2F pathway and Ezh2 inactivation. Sci. Rep. 7, 1–13 (2017).
doi: 10.1038/s41598-017-05564-x
Inoue, D. et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia 29, 847–857 (2015).
pubmed: 25306901 doi: 10.1038/leu.2014.301
Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).
pubmed: 18809716 pmcid: 2556783 doi: 10.1084/jem.20081297
Luchsinger, L. L., De Almeida, M. J., Corrigan, D. J., Mumau, M. & Snoeck, H. W. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529, 528–531 (2016).
pubmed: 26789249 pmcid: 5106870 doi: 10.1038/nature16500
Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).
pubmed: 23290137 pmcid: 3632072 doi: 10.1016/j.stem.2012.11.022
Archer, S. L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013).
pubmed: 24304053 doi: 10.1056/NEJMra1215233
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).
pubmed: 21102612 doi: 10.1038/nrm3013
Yahata, T. et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2951 (2015).
doi: 10.1182/blood-2011-01-330050
Douglas, C. W. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).
doi: 10.1038/nrc3365
Abbas, H. A. et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7, 606–617 (2010).
pubmed: 21040902 pmcid: 3026610 doi: 10.1016/j.stem.2010.09.013
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).
pubmed: 16286925 pmcid: 2637821 doi: 10.1038/nm1320
Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2007).
pubmed: 17032926 pmcid: 1794064 doi: 10.1182/blood-2006-03-010413
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 450, 736–740 (2007).
doi: 10.1038/nature06322 pubmed: 18046414
Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).
pubmed: 15851026 doi: 10.1016/j.cell.2005.02.031
Yilmaz, Ö. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).
pubmed: 16598206 doi: 10.1038/nature04703
Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).
pubmed: 16633340 doi: 10.1038/nature04747
Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).
pubmed: 28614305 pmcid: 5581194 doi: 10.1038/nature22798
Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A. & Dutta, A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J. Biol. Chem. 284, 34179–34188 (2009).
pubmed: 19815555 pmcid: 2797188 doi: 10.1074/jbc.M109.046755
Misaghi, S. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol. Cell. Biol. 29, 2181–2192 (2009).
pubmed: 19188440 pmcid: 2663315 doi: 10.1128/MCB.01517-08
Qin, J. et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat. Commun. 6, 8471 (2015).
pubmed: 26419610 doi: 10.1038/ncomms9471
Ruan, H. Bin et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 16, 226–237 (2012).
pubmed: 22883232 pmcid: 3480732 doi: 10.1016/j.cmet.2012.07.006
Cao, L. et al. Deregulation of tumor suppressive ASXL1–PTEN/AKT axis in myeloid malignancies. J. Mol. Cell Biol. 12, 688–699 (2020).
pubmed: 32236560 pmcid: 7749738 doi: 10.1093/jmcb/mjaa011
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).
pubmed: 28636844 pmcid: 6717509 doi: 10.1056/NEJMoa1701719
Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science (80-.). 364, eaaw0726 (2019).
doi: 10.1126/science.aaw0726
Tamura, M. et al. Opposing effects of acute versus chronic inhibition of p53 on decitabine’s efficacy in myeloid neoplasms. Sci. Rep. 9, 4–6 (2019).
doi: 10.1038/s41598-019-44496-6
Rehman, J. et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26, 2175–2186 (2012).
pubmed: 22321727 pmcid: 3336787 doi: 10.1096/fj.11-196543
Senyilmaz, D. et al. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525, 124–128 (2015).
pubmed: 26214738 pmcid: 4561519 doi: 10.1038/nature14601
Kunisawa, J. et al. Mode of bioenergetic metabolism during B cell differentiation in the intestine determines the distinct requirement for vitamin B1. Cell Rep. 13, 122–131 (2015).
pubmed: 26411688 doi: 10.1016/j.celrep.2015.08.063
Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).
pubmed: 29058703 doi: 10.1038/ni.3867
Dobin, A. & Gingeras, T. R. “TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
doi: 10.1186/gb-2013-14-4-r36
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
pubmed: 22383036 pmcid: 3334321 doi: 10.1038/nprot.2012.016
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
pubmed: 20436464 pmcid: 3146043 doi: 10.1038/nbt.1621

Auteurs

Takeshi Fujino (T)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Susumu Goyama (S)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Yuki Sugiura (Y)

Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo, Japan.

Daichi Inoue (D)

Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, USA.
Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe City, Hyogo, Japan.

Shuhei Asada (S)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.

Satoshi Yamasaki (S)

Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Akiko Matsumoto (A)

Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Kiyoshi Yamaguchi (K)

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Yumiko Isobe (Y)

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Akiho Tsuchiya (A)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Shiori Shikata (S)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Naru Sato (N)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Hironobu Morinaga (H)

Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.

Tomofusa Fukuyama (T)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Yosuke Tanaka (Y)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Tsuyoshi Fukushima (T)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Reina Takeda (R)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Keita Yamamoto (K)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Hiroaki Honda (H)

Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.

Emi K Nishimura (EK)

Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.

Yoichi Furukawa (Y)

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Tatsuhiro Shibata (T)

Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.

Omar Abdel-Wahab (O)

Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, USA.

Makoto Suematsu (M)

Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo, Japan.

Toshio Kitamura (T)

Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan. kitamura@ims.u-tokyo.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH