Growth of the acetogenic bacterium Acetobacterium woodii on glycerol and dihydroxyacetone.


Journal

Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692

Informations de publication

Date de publication:
05 2021
Historique:
received: 15 05 2020
accepted: 03 04 2021
pubmed: 6 4 2021
medline: 16 10 2021
entrez: 5 4 2021
Statut: ppublish

Résumé

More than 2 million tons of glycerol are produced during industrial processes each year and, therefore, glycerol is an inexpensive feedstock to produce biocommodities by bacterial fermentation. Acetogenic bacteria are interesting production platforms and there have been few reports in the literature on glycerol utilization by this ecophysiologically important group of strictly anaerobic bacteria. Here, we show that the model acetogen Acetobacterium woodii DSM1030 is able to grow on glycerol, but contrary to expectations, only for 2-3 transfers. Transcriptome analysis revealed the expression of the pdu operon encoding a propanediol dehydratase along with genes encoding bacterial microcompartments. Deletion of pduAB led to a stable growth of A. woodii on glycerol, consistent with the hypothesis that the propanediol dehydratase also acts on glycerol leading to a toxic end-product. Glycerol is oxidized to acetate and the reducing equivalents are reoxidized by reducing CO

Identifiants

pubmed: 33817956
doi: 10.1111/1462-2920.15503
doi:

Substances chimiques

Dihydroxyacetone O10DDW6JOO
Glycerol PDC6A3C0OX

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2648-2658

Informations de copyright

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

Références

Bertsch, J., and Müller, V. (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81: 5949-5956.
Bertsch, J., Siemund, A.L., Kremp, F., and Müller, V. (2016) A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway. Environ Microbiol 18: 2913-2922.
Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteine-dye-binding. Anal Biochem 72: 248-254.
Bryant, M.P. (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324-1328.
Chowdhury, N.P., Alberti, L., Linder, M., and Müller, V. (2020) Exploring bacterial microcompartments in the Acetogenic bacterium Acetobacterium woodii. Front Microbiol 11: 593467.
Daniel, R., Stuertz, K., and Gottschalk, G. (1995) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177: 4392-4401.
Diekert, G., and Wohlfarth, G. (1994) Metabolism of homoacetogens. Anton Leeuwenhoek Int J G 66: 209-221.
Dönig, J., and Müller, V. (2018) Alanine, a novel growth substrate for the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 84: e02023-e02018.
Drake, H.L., Gößner, A.S., and Daniel, S.L. (2008) Old acetogens, new light. Ann N Y Acad Sci 1125: 100-128.
Eichler, B., and Schink, B. (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140: 147-152.
Forage, R.G., and Lin, E.C. (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151: 591-599.
Gutknecht, R., Beutler, R., Garcia-Alles, L.F., Baumann, U., and Erni, B. (2001) The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 20: 2480-2486.
Gutnick, D., Calvo, J.M., Klopotowski, T., and Ames, B.N. (1969) Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol 100: 215-219.
Heise, R., Müller, V., and Gottschalk, G. (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171: 5473-5478.
Hungate, R. E. (1969). A roll tube method for cultivation of strict anaerobes. Methods in Microbiology. J. R. Norris & D. W. Ribbons. New York and London, Academic Press 3b: 117-132.
Kremp, F., Poehlein, A., Daniel, R., and Müller, V. (2018) Methanol metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 20: 4369-4384.
Kremp, F., Roth, J., and Müller, V. (2020) The Sporomusa type Nfn is a novel type of electron-bifurcating transhydrogenase that links the redox pools in acetogenic bacteria. Sci Rep 10: 14872.
Lechtenfeld, M., Heine, J., Sameith, J., Kremp, F., and Müller, V. (2018) Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 20: 4512-4525.
Lin, E.C. (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30: 535-578.
Magasanik, B., Brooke, M.S., and Karibian, D. (1953) Metabolic pathways of glycerol dissimilation; a comparative study of two strains of Aerobacter aerogenes. J Bacteriol 66: 611-619.
Mock, J., Zheng, Y., Müller, A.P., Ly, S., Tran, L., Segovia, S., et al. (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197: 2965-2980.
Müller, V. (2008) Bacterial Fermentation. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons.
Müller, V., and Frerichs, J. (2013) Acetogenic Bacteria. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons Ltd.
Poehlein, A., Schmidt, S., Kaster, A.-K., Goenrich, M., Vollmers, J., Thürmer, A., et al. (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7: e33439.
Ragsdale, S.W., and Pierce, E. (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784: 1873-1898.
Schmidt, K., Liaaen-Jensen, S., and Schlegel, H.G. (1963) Die Carotinoide der Thiorhodaceae. Arch Mikrobiol 46: 117-126.
Schölmerich, M.C., and Müller, V. (2019) Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. Proc Natl Acad Sci U S A 116: 6329-6334.
Schuchmann, K., and Müller, V. (2012) A bacterial electron bifurcating hydrogenase. J Biol Chem 287: 31165-31171.
Schuchmann, K., and Müller, V. (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809-821.
Schuchmann, K., and Müller, V. (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82: 4056-4069.
Schuchmann, K., Schmidt, S., Martinez Lopez, A., Kaberline, C., Kuhns, M., Lorenzen, W., et al. (2015) Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol. J Bacteriol 197: 382-391.
Sponholz, W.R., and Wünsch, B. (1980) Enzymatische Bestimmung von Dihydroxyaceton in Gegenwart von Glycerin. Z Lebensm Unters Forsch 171: 178-197.
Talarico, T.L., Casas, I.A., Chung, T.C., and Dobrogosz, W.J. (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32: 1854-1858.
Trifunović, D., Schuchmann, K., and Müller, V. (2016) Ethylene glycol metabolism in the acetogen Acetobacterium woodii. J Bacteriol 198: 1058-1065.
Westphal, L., Wiechmann, A., Baker, J., Minton, N.P., and Müller, V. (2018) The Rnf complex is an energy coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J Bacteriol 200: e00357-00318.
Wiechmann, A., Ciurus, S., Oswald, F., Seiler, V.N., and Muller, V. (2020) It does not always take two to tango: "Syntrophy" via hydrogen cycling in one bacterial cell. ISME J 14: 1561-1570.

Auteurs

Dragan Trifunović (D)

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany.

Jimyung Moon (J)

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany.

Anja Poehlein (A)

Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany.

Rolf Daniel (R)

Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany.

Volker Müller (V)

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany.

Articles similaires

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Humans Insulin Resistance Muscle, Skeletal Oxidative Stress Oxidation-Reduction
Colorimetry Captopril Humans Alloys Limit of Detection

Classifications MeSH