Crystal Structure of the Epo1-Bem3 Complex for Bud Growth.
Amino Acid Sequence
Carrier Proteins
/ chemistry
Crystallography, X-Ray
GTPase-Activating Proteins
/ chemistry
Magnetic Resonance Spectroscopy
Models, Molecular
Multiprotein Complexes
/ chemistry
Protein Binding
Protein Conformation
Protein Multimerization
Saccharomyces cerevisiae
/ growth & development
Saccharomyces cerevisiae Proteins
/ chemistry
Structure-Activity Relationship
Epo1-Bem3
Ssc2
budding yeast
complex
polarisome
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
07 Apr 2021
07 Apr 2021
Historique:
received:
15
03
2021
revised:
30
03
2021
accepted:
04
04
2021
entrez:
30
4
2021
pubmed:
1
5
2021
medline:
21
5
2021
Statut:
epublish
Résumé
Tubules of the endoplasmic reticulum (ER) spread into the buds of yeast by an actin-based mechanism and, upon entry, become attached to the polarisome, a proteinaceous micro-compartment below the tip of the bud. The minimal tether between polarisome and cortical ER is formed by a protein complex consisting of Epo1, a member of the polarisome, Scs2, a membrane protein of the ER and Cdc42 guanosine triphosphatase-activating protein Bem3. Here, we report the crystal structure of a complex between Epo1 and Bem3. In addition, we characterize through the hydrogen/deuterium (H/D) exchange assay the interface between Scs2 and Epo1. Our findings provide a first structural insight into the molecular architecture of the link between cortical ER and the polarisome.
Identifiants
pubmed: 33917059
pii: ijms22083812
doi: 10.3390/ijms22083812
pmc: PMC8067709
pii:
doi:
Substances chimiques
BEM3 protein, S cerevisiae
0
Carrier Proteins
0
Epo1 protein, S cerevisiae
0
GTPase-Activating Proteins
0
Multiprotein Complexes
0
Saccharomyces cerevisiae Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4116-21
pubmed: 16537494
J Immunol Methods. 1993 Nov 5;166(1):133-43
pubmed: 8228284
J Cell Sci. 2004 Mar 15;117(Pt 8):1291-300
pubmed: 15020669
J Cell Biol. 2005 Jun 20;169(6):897-908
pubmed: 15967812
J Cell Biol. 2015 Jan 5;208(1):71-87
pubmed: 25547157
Methods Mol Biol. 2007;363:91-108
pubmed: 17272838
EMBO J. 2003 May 1;22(9):2025-35
pubmed: 12727870
J Biochem. 1995 Jul;118(1):39-45
pubmed: 8537323
Nucleic Acids Res. 2019 Jul 9;47(12):6538-6550
pubmed: 31131400
Structure. 2005 Jul;13(7):1035-45
pubmed: 16004875
Methods Mol Biol. 2017;1615:257-275
pubmed: 28667619
J Cell Sci. 2013 Oct 15;126(Pt 20):4560-71
pubmed: 23943876
Curr Opin Biotechnol. 1999 Oct;10(5):411-21
pubmed: 10508629
Cell. 2014 Jul 31;158(3):620-32
pubmed: 25083872
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67
pubmed: 22505256
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Anal Biochem. 1991 Nov 1;198(2):268-77
pubmed: 1724720
Fungal Genet Biol. 2017 Feb;99:40-51
pubmed: 28064039
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
pubmed: 20124692
Annu Rev Cell Dev Biol. 2004;20:559-91
pubmed: 15473852
Eukaryot Cell. 2002 Jun;1(3):469-80
pubmed: 12455995
Nat Rev Mol Cell Biol. 2007 Jun;8(6):429-39
pubmed: 17505521
J Am Soc Mass Spectrom. 2013 Oct;24(10):1584-92
pubmed: 23884631
EMBO J. 1990 May;9(5):1665-72
pubmed: 2184035
Science. 2004 Jun 11;304(5677):1644-7
pubmed: 15192221
Trends Cell Biol. 2001 Feb;11(2):82-8
pubmed: 11166216
EMBO J. 2007 Oct 31;26(21):4501-13
pubmed: 17914457
Dev Cell. 2012 Dec 11;23(6):1129-40
pubmed: 23237950
Anal Chem. 2006 Feb 15;78(4):1005-14
pubmed: 16478090
Science. 2004 Jul 16;305(5682):393-6
pubmed: 15256669